0乘以无穷大结果不确定。
分析过程如下:
0是一个确定的数,无论乘以几都是0。
“0”也可以表示无穷小,它乘以无穷大要分类讨论。
0是无穷小的极限,显然0和无穷小不是一回事。
扩展资料:
∞的用途:
在叙述一个区间时,只有上限,则是(-∞,x](x∈R);只有下限,则是[x,+∞)(x∈R);既没有上限又没有下限,则是(-∞,+∞)。
在高等数学中,规定:x为实数,当x>0时,x÷0=+∞;当x<0时,x÷0=-∞;当x=0时,x÷0无意义。
+∞与实数加、减、乘、除、乘方、开方运算,结果永远是+∞;-∞与实数加、减、乘、除、乘方、开方运算,结果永远是-∞。(0×±∞无意义)
+∞在某种意义上可以表达为x+1,因为x是表达任意实数或虚数的符号,而无限一定大于任何任意实数或虚数,而0.999...999(0.9的无限循环)=1的悖论显示无限或许是无限大到能涉及更高一个层面(因为0.9的无限循环是小于一的小数却等于1)
1、如果是等于0,那么0乘任何数等于0。
2、如果是趋于0,那么可以将无穷大看做是趋于1/0,0乘无穷大就等于0/0,这叫做未定型,其值可能是0,也可能是无穷大,还可能是常数。
比如x趋于0时,有:
x→0limx=0
x→0limx²=0
x→0lim(1/sinx)=∞
x→0lim(1/sin²x)=∞
而
x→0lim(x/sinx)=1
x→0lim(x/sin²x)=∞
x→0lim(x²/sinx)=0
x→0lim(x²/sin²x)=1
极限意义:
在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。
换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。