关于圆的所有定理

五大山2023-05-02  20

1、圆是以圆心为对称中心的中心对称图形,围绕圆心旋转任意一个角度,都能够与原来的重合。

2、弦切角的度数等于它所夹的弧的圆心角的度数的一半。

3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

4、在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

5、把整个圆周等分成360份,每一份弧是1度的弧,圆心角的度数和它所对的弧的度数相等。

6、垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

7、平分弦的直径垂直于弦,并且平分弦所对的两条弧。

8、同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等。

9、弧的比等于弧所对的圆心角的比。

10、圆的内接四边形的对角互补或相等。

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

圆的两条平行弦所夹的弧相等。

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等

同一条弧所对的圆周角等于它所对的圆心的角的一半

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧

半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径

三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

弦切角等于所夹弧所对的圆周角

推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

切线的性质与判定定理

(1)判定定理:过半径外端且垂直于半径的直线是切线

两个条件:过半径外端且垂直半径,二者缺一不可

即:∵MN⊥OA且MN过半径OA外端

∴MN是⊙O的切线

(2)性质定理:切线垂直于过切点的半径(如上图)

推论1:过圆心垂直于切线的直线必过切点

推论2:过切点垂直于切线的直线必过圆心

以上三个定理及推论也称二推一定理:

即:过圆心

过切点

垂直切线中知道其中两个条件推出最后一个条件

切线长定理:

从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

圆内相交弦定理及其推论:

(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等

即:在⊙O中,∵弦AB、CD相交于点P

∴PA·PB=PC·PA

(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

圆公共弦定理:连心线垂直平分公共弦

圆的标准方程

(x-a)2+(y-b)2=r2

注:(a,b)是圆心坐标

圆的一般方程

x2+y2+Dx+Ey+F=0

注:D2+E2-4F>0

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理

不在同一直线上的三点确定一个圆。

110垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2

圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理

一条弧所对的圆周角等于它所对的圆心角的一半

117推论1

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理

圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交

d<r

②直线L和⊙O相切

d=r

③直线L和⊙O相离

d>r

122切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理

圆的切线垂直于经过切点的半径

124推论1

经过圆心且垂直于切线的直线必经过切点

125推论2

经过切点且垂直于切线的直线必经过圆心

126切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理

弦切角等于它所夹的弧对的圆周角

129推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离

d>R+r

②两圆外切

d=R+r

③两圆相交

R-r<d<R+r(R>r)

④两圆内切

d=R-r(R>r)

⑤两圆内含d<R-r(R>r)

一、周长公式

1、圆的周长 :C=2πr (r:半径)

2、半圆周长:C=πr+2r

二、圆的面积

1、面积:S=πr²

2、半圆面积:S=πr²/2

三、弧长角度公式

1、扇形弧长:L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)

2、扇形面积:S=nπ R²/360=LR/2(L为扇形的弧长)

3、圆锥底面半径: r=nR/360(r为底面半径)(n为圆心角)

4、扇形面积公式:S=nπr²/360=rl/2

R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。

也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。

四、圆的方程:

1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

2、圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

五、圆和点的位置关系:

以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r

六、直线与圆有3种位置关系:

无公共点为相离;

有两个公共点为相交;

圆与直线有唯一公共点为相切。这条直线叫做圆的切线,这个唯一的公共点叫做切点以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

一、圆的性质

(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

(2)有关圆周角和圆心角的性质和定理

① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

(3)有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

(8)周长相等,圆面积比正方形、长方形、三角形的面积大。

参考链接:圆_百度百科

以上就是关于关于圆的所有定理全部的内容,包括:关于圆的所有定理、与圆有关的公式、关于圆的所有公式有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3757594.html

最新回复(0)