循环小数没有有限的说法,只要说循环小数都是无限的。所有有限小数都是有理数;无限小数中,无限循环小数是有理数,无限不循环小数是无理数。
小数分有限小数和无限小数。无限小数分为无限循环小数和无限不循环小数。有限小数即使出现循环,也不能叫有限循环小数。也就是说,循环小数一定是无限小数。
循环小数是指从小数点后某一位开始有限地重复出现前一个或一节数码的十进制无限小数。无限循环小数都可以转化为分母为

的分数,因此无限循环小数属于有理数。无限不循环小数属于无理数。

扩展资料:
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
不是,无理数是无限不循环的小数。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
扩展资料:
古代数学家认为,这样能把直线上所有的点用完。但是,大约在公元前5世纪,毕达哥拉斯学派的希帕索斯发现了:等腰直角三角形的直角边与其斜边不可通约。
新发现的数由于和之前的所谓“合理存在的数”——即有理数在学派内部形成了对立,所以被称作了无理数。希帕索斯正是因为这一数学发现,而被毕达哥拉斯学派的人投进了大海,处以“淹死”的惩罚。
直角三角形的直角边与其斜边不可通约,这个简单的数学事实的发现使毕达哥拉斯学派的人感到迷惑不解。它不仅违背了毕达哥拉斯派的信条,而且冲击着当时希腊人持有的“一切量都可以用有理数表示”的信仰。所以,通常人们就把希帕索斯发现的这个矛盾,叫做希帕索斯悖论。
不过存在另外一种说法称,据说, 正五边形的边与对角线之比 是最先被发现的无理数。
参考资料:
有限小数都是有理数;
无限小数有两种:
①无限不循环小数,例如π,根号二·····这些属于无理数;
②无限循环小数,例如0111111111······,123232323232·····这些属于有理数。
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。
有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
扩展资料:
有理数运算定律
加法运算律:
1、加法交换律:两个数相加,交换加数的位置,和不变,即 。
2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。
, 。
减法运算律:
减法运算律:减去一个数,等于加上这个数的相反数。即: 。
乘法运算律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变,即 。
2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 。
3、乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即:
, , 。
限循环小数属于有理数。
从小数点后某一位开始不断地出重复现前一个或一节数码的十进制无限小数。如21666…、35232323…等,被重复的一个或一节数码称为循环节。循环小数的缩写法是将第一个循环节以后的数码全部略去,而在保留的循环节首末两位上方各添一个小点。
例如,2166…缩写为 216(读作“二点一六,六循环”)、034103103…103…缩写为034103(读作“零点三四一零三,一零三循环”)。在数的分类中,无限循环小数属于有理数。
无限小数大小比较:
同整数一样,小数的计数单位也按照一定的顺序排列起来,它们所占的位置叫做小数的数位。数位顺序为十分位、百分位、千分位、万分位、十万分位、百万分位……。
小数的大小比较:先看整数部分,整数部分较大的,这个数就大;整数部分相同就看十分位,十分位较大的,这个数就大;十分位相同就看百分位,百分位较大的,这个数就大。以此类推。
以上就是关于有限循环小数和有限不循环小数是有理数还是无理数全部的内容,包括:有限循环小数和有限不循环小数是有理数还是无理数、无限循环小数是无理数吗、有限小数和无限小数都是有理数吗等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!