a^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)
=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)
有立方和公式及其推广:
(1) a^3+b^3=(a+b)(a^2-ab+b^2)
立方和公式
a^3+b^3=(a+b) (a^2-ab+b^2)
折叠立方差公式
a^3-b^3=(a-b) (a^2+ab+b^2)
折叠3项立方和公式
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
推导过程:
a^3+b^3+c^3-3abc
=(a^3+3a^2 b+3ab^2+b^3+c^3)-(3abc+3a^2 b+3ab^2)
=[(a+b)^3+c^3]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+2ab-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2+2ab-3ab-ac-bc)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
折叠编辑本段文字表达
折叠立方和,差公式
两数和(差),乘它们的平方和与它们的积的差(和),等于这两个数的立方和(差)
折叠3项立方和公式
三数之和,乘它们的平方和与它们两两的积的差,等于这三个数的立方和减三数之积的三倍
折叠编辑本段公式证明
⒈迭代法:
我们知道:
0次方和的求和公式ΣN^0=N 即1^0+2^0++n^0=n
1次方和的求和公式ΣN^1=N(N+1)/2 即1^1+2^1++n^1=n(n+1)/2
2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6 即1^2+2^2+…+n^2=n(n+1)(2n+1)/6——平方和公式,此公式可由同种方法得出,取公式(x+1)^3-x^3=3x^2+3x+1,迭代即得。
取公式:(X+1)^4-X^4=4×X^3+6×X^2+4×X+1
系数可由杨辉三角形来确定
那么就得出:
(N+1)^4-N^4=4N^3+6N^2+4N+1…………⑴
N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1…………⑵
(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1…………⑶
…………
2^4-1^4=4×1^3+6×1^2+4×1+1…………(n)
于是⑴+⑵+⑶+……+(n)有
左边=(N+1)^4-1
右边=4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N
所以呢
把以上这已经证得的三个公式代入
4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N=(N+1)^4-1
得4(1^3+2^3+3^3+……+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N
移项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+4N^3+6N^2+4N-N-2N^2-2N-2N^3-3N^2-N)
等号右侧合并同类项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+2N^3+N^2)
即
1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2
大功告成!
立方和公式推导完毕
1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2
2 因式分解思想证明如下:a^3+b^3=a^3+a^2×b+b^3-a^2×b
=a^2(a+b)-b(a^2-b^2)=a^2(a+b)-b(a+b)(a-b)
=(a+b)[a^2-b(a-b)]=(a+b)(a^2-ab+b^2)
折叠编辑本段公式延伸
正整数范围中 1^3 + 2^3 + …… n^3 = [n (n+1) / 2]^2=(1+2+……+n)^2
折叠编辑本段几何验证
立方和公式透过绘立体的图像,也可验证立方和。根据右图,设两个立方,总和为:
x^3+y^3
把两个立方体对角贴在一起,根据虚线,可间接得到:
(x+y)^3
要得到x^3+ y^3,可使用(x + y)^3的空白位置。该空白位置可分割为3个部分:
·x×y×(x+y)
·x×(x+y)×y
·(x+y)×x×y
把三个部分加在一起,便得:
=xy(x+y)+xy(x+y)+xy(x+y)
=3xy(x+y)
之后,把(x + y)^3减去它,便得:=(x+y)^3-3xy(x+y)公式发现两个数项皆有一个公因子,把它抽出,并得:
=(x+y)[(x+y)^2-3xy]
(x + y)^2可透过和平方公式,得到:
=(x + y)(x ^2+ 2xy + y^2-3xy)
=(x + y)(x ^2− xy + y^2)
这样便可证明:x^3+y^3=(x + y)(x^2 − xy + y^2)
折叠编辑本段关于因数
一般而言,任取一自然数N,他的因数有1,n1,n2,n3,……,nk,N,这些因数的因数个数分别为1,m1,m2,m3,……,mk,k+2,则
1^3+m1^3+m2^3+m3^3+……+mk^3+(k+2)^3
=(1+m1+m2+m3+……+mk+k+2)^2
我们发现,上述规律对素数p是永远成立的,因为素数p的因数只有1和p,因数的个数只有1和2,所以成立。
合数的验证方法可以从因数个数出发证明,有中学水平的人可以自己证明。
比如120,有因数
1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120;它们的因数个数为
1,2,2,3,2,4,4,4,6,4,6,8,8,8,12,16,
1^3+2^3+2^3+3^3+2^3+4^3+4^3+4^3+6^3+4^3+6^3+8^3+8^3+8^3+12^3+16^3=8100
(1+2+2+3+2+4+4+4+6+4+6+8+8+8+12+16)^2=8100
1、立方和公式a^3+b^3=(a+b)(a^2-ab+b^2)的证明。
证明:
因为a^3+b^3=a^3-ab^2+ab^2+b^3
=(a^3-ab^2)+(ab^2+b^3)
=a(a^2-b^2)+b^2(a+b)
=a(a+b)(a-b)+b^2(a+b)
=(a+b)(a^2-ab)+(a+b)b^2
=(a+b)(a^2-ab+b^2)
所以a^3+b^3=a^3-ab^2+ab^2+b^3得证。
2、立方差公式a^3-b^3=(a-b)(a^2+ab+b^2)的证明。
证明:
因为a^3-b^3=a^3-ab^2+ab^2-b^3
=(a^3-ab^2)+(ab^2-b^3)
=a(a^2-b^2)+b^2(a-b)
=a(a+b)(a-b)+b^2(a-b)
=(a-b)(a^2+ab)+(a-b)b^2
=(a-b)(a^2+ab+b^2)
所以a^3-b^3=(a-b)(a^2+ab+b^2)得证。
扩展资料:
1、公式因式分解法
(1)平方差公式
a^2-b^2=(a+b)(a-b)
(2)完全平方和公式
a^2-2ab+b^2=(a-b)^2
(3)完全平方差公式
a^2+2ab+b^2=(a+b)^2
2、提公因式因式分解法
(1)找出公因式。
(2)提公因式并确定另一个因式。
如4xy+3x=x(4y+3)
3、因式分解的原则
(1)分解因式是多项式的恒等变形,要求等式左边必须是多项式。
(2)分解因式的结果必须是以乘积的形式表示。
(3)每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
参考资料来源:百度百科-因式分解
立方差公式也是数学中,最常用公式之一,此公式在数学学习中占有很重要的地位,甚至在高等数学中也经常用到,具体为: 两数差乘以它们的平方和与它们的积的和等于两数的立方差。即a3-b3=(a-b)(a2+ab+b2)
立方差公式也是数学中,最常用公式之一,大约在初中二年级接触该公式(现已被删去),但公式在以后数学学习中仍占有很重要的地位,甚至在高等数学中也经常用到,具体为: 两数差乘以它们的平方和与它们的积的和等于两数的立方差。即a^3-b^3=(a-b)(a^2+ab+b^2)
推导过程
1 证明如下: 立方差(a-b)^3=a^3-3a^2b+3ab^2-b^3
所以a^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)
=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)
2(因式分解思想)证明如下:a^3-b^3=a^3-a^2b-b^3+a^2b
=a^2(a-b)+b(a^2-b^2)=a^2(a-b)+b(a+b)(a-b)=
=(a-b)[a^2+b(a+b)]=(a-b)(a^2+ab+b^2)
推论
类似地,我们有立方和公式及其推广:
(1) a^3+b^3=(a+b)(a^2-ab+b^2)
(2) a^n+b^n=(a+b)[a^(n-1)-a^(n-2)×b++(-1)^(r-1)×a^(n-r)×b^(r-1)++b^(n-1)](n为大于零的奇数,r为中括号内项的序数) (后面括号中各项式的幂之和都为n-1)。
a^n表示a的n次方。
(摘自百度百科)
以上就是关于“立方和、立方差”公式是什么全部的内容,包括:“立方和、立方差”公式是什么、立方和差公式的证明、立方差公式是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!