1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax(a为底数,x为真数)
y'=1/x*lna
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
13.y=u^v
==>
y'=v'
*
u^v
*
lnu
+
u'
*
u^(v-1)
*
v
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
△y=a^(x+△x)-a^x=a^x(a^△x-1)
△y/△x=a^x(a^△x-1)/△x
如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。
所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。
可以知道,当a=e时有y=e^x
y'=e^x。
4.y=logax
△y=loga(x+△x)-logax=loga(x+△x)/x=loga[(1+△x/x)^x]/x
△y/△x=loga[(1+△x/x)^(x/△x)]/x
因为当△x→0时,△x/x趋向于0而x/△x趋向于∞,所以lim△x→0loga(1+△x/x)^(x/△x)=logae,所以有
lim△x→0△y/△x=logae/x。
可以知道,当a=e时有y=lnx
y'=1/x。
这时可以进行y=x^n
y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
△y=sin(x+△x)-sinx=2cos(x+△x/2)sin(△x/2)
△y/△x=2cos(x+△x/2)sin(△x/2)/△x=cos(x+△x/2)sin(△x/2)/(△x/2)
所以lim△x→0△y/△x=lim△x→0cos(x+△x/2)•lim△x→0sin(△x/2)/(△x/2)=cosx
6.类似地,可以导出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
13.联立:
①(ln(u^v))'=(v
*
lnu)'
②(ln(u^v))'=ln'(u^v)
*
(u^v)'=(u^v)'
/
(u^v)
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
指数函数运算公式:
同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。
同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。
幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。
积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
指数函数定义:
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。
几个基本的函数的导数:
y=a^x,y'=a^xlna;
y=c(c为常数),y'=0;
y=x^n,y'=nx^(n-1);
y=e^x,y'=e^x;
y=logax(a为底数,x为真数),y'=1/x*lna;
y=lnx,y'=1/x;
y=sinx,y'=cosx;
y=cosx,y'=-sinx;
y=tanx,y'=1/cos^2x。
1、导数的定义设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0= f′(x0)(x-x0).
4、几种常见函数的导数
函数y=C(C为常数)的导数 C′=0.
函数y=xn(n∈Q)的导数 (xn)′=nxn-1
函数y=sinx的导数 (sinx)′=cosx
函数y=cosx的导数 (cosx)′=-sinx
5、函数四则运算求导法则
和的导数 (u+v)′=u′+v′
差的导数 (u-v)′= u′-v′
积的导数 (u·v)′=u′v+uv′
商的导数 .
6、复合函数的求导法则
一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x.
7、对数、指数函数的导数
(1)对数函数的导数
①;
②.公式输入不出来
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
(2)指数函数的导数
①(ex)′=ex
②(ax)′=axlna
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。