无穷小乘有界函数等于无穷小。
因为无穷小量是趋于0的,而0乘以任意确定的数都得到确定的0,0是可以比较大小的,这样由夹逼定理得到极限依旧是0。
但是无穷大量却是不定的量,无法比较大小,也就无法确定极限。无穷大乘有界函数的极限可能是有限的数,可能还是无穷大,也可能不存在。
举反例如下:当x趋于无穷时,x为无穷大,y=sin(1/x)为有界函数,x乘以dusin(1/x)时,极限等于1,这时候结果就不再是无穷大。
常用等价无穷小:
1、e^x-1~x (x→0)
2、 e^(x^2)-1~x^2 (x→0)
3、1-cosx~1/2x^2 (x→0)
4、1-cos(x^2)~1/2x^4 (x→0)
5、sinx~x (x→0)
6、tanx~x (x→0)
7、arcsinx~x (x→0)
8、arctanx~x (x→0)
9、1-cosx~1/2x^2 (x→0)
10、a^x-1~xlna (x→0)
11、e^x-1~x (x→0)
12、ln(1+x)~x (x→0)
13、(1+Bx)^a-1~aBx (x→0)
14、[(1+x)^1/n]-1~1/nx (x→0)
无穷小乘有界函数等于无穷小。因为无穷小量是趋于0的,而0乘以任意确定的数都得到确定的0,0是可以比较大小的。
将比较复杂的指数函数,对数函数,三角函数/反三角函数转化为比较简单的幂函数,并且以上公式里x可以代指任意无穷小量。
无穷小的特点:
要等价的部分使用等价无穷小替换之后还要和其他部分进行相乘除运算时,一般就能使用等价无穷小替换。而且在求极限的时候,能够使用等价无穷小的情况下应当尽量使用等价无穷小替换。要等价的部分使用等价无穷小替换之后还要和其他部分进行相加减运算时,一般不能使用等价无穷小替换。