数列的单调性
(1)一个数列{an},如果从第2项起,每一项都大于它前面的一项,即an+1>an,那么这个数列叫作递增数列。
(2)一个数列,如果从第2项起,每一项都小于它前面的一项,即an+1<an,那么这个数列叫作递减数列。
(3)一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫作摆动数列。
(4)如果数列{an}的各项都相等,那么这个数列叫作常数列。
扩展资料:
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
分类
(1)有穷数列和无穷数列:
项数有限的数列为“有穷数列”(finite sequence);
项数无限的数列为“无穷数列”(infinite sequence)。
(2)对于正项数列:(数列的各项都是正数的为正项数列)
1)从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;
2)从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;
3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列);
(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数);
(4)常数数列:各项相等的数列叫做常数数列(如:2,2,2,2,2,2,2,2,2)。
参考资料来源:百度百科-数列
数列单调性可以直接使用原始的定义D(n)=a[n]-a[n-1],转化为一个关于n的表达式(或者称函数)进行判断。
一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫作摆动数列,如果数列{an}的各项都相等,那么这个数列叫作常数列。
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
解:
(1) Xn+1 -Xn>0或<0 是数列单调的充要条件,任何数列只要满足这个条件就是单调数列。
(2) Xn+1/Xn>=1 或Xn/Xn+1 >=1 与数列的单调性互为充要条件。
(3) Xn+1/Xn<=1 的使用是有条件的,要求数列所有项同号,通常用于正项数列。 对于交错数列,显然 Xn+1/Xn<0<1 但不是单调数列。对于3,2,1,0,-1,-2 类型的带有变号点的数列同样是不适用的。
(4) 以上两种方法是常用方法但不是仅有的方法,例如利用求解通项公式对n的导数,根据导数的情况判断单调性:例如 an = (e^n)/n,用函数f(x) = (e^x)/x (x>0)的导数判断单调性更有效。
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2