偶函数的性质是什么?

林彪简历2023-02-04  29

偶函数性质

1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x),如y=x*x;y=cosx。

2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。

3、偶函数的定义域D关于原点对称是这个函数成为偶函数的必要非充分条件。

例如:f(x)=x^2,x∈R(f(x)等于x的平方,x属于一切实数),此时的f(x)为偶函

数。f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2<x≤2),此时的f(x)不是偶函数。

偶函数运算法则

1、两个偶函数相加所得的和为偶函数。

2、两个奇函数相加所得的和为奇函数。

3、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

4、两个偶函数相乘所得的积为偶函数。

5、两个奇函数相乘所得的积为偶函数。

6、一个偶函数与一个奇函数相乘所得的积为奇函数。

7、奇函数一定满足f(0)=0(因为F(0)这个表达式表示0在定义域范围内,F(0)就必须为0)所以不一定奇函数有f(0),但有F(0)时F(0)必须等于0,不一定有f(0)=0,推出奇函数,此时函数不一定为奇函数,例f(x)=x^2。

8、定义在R上的奇函数f(x)必满足f(0)=0。

9、当且仅当f(x)=0(定义域关于原点对称)时,f(x)既是奇函数又是偶函数。

10、在对称区间上,被乘函数为奇函数的定积分为零。

扩展资料

利用定义判断函数奇偶性的步骤:

1、首先确定函数的定义域,并判断其是否关于原点对称;

2、确定f(-x)与f(x)的关系;

3、作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。

奇函数是中心对称

偶函数是左右对称

所有性质都是从这上面得来的

有很多

奇函数性质:

1、图象关于原点对称

2、满足f(-x)

=

-

f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质:

1、图象关于y轴对称

2、满足f(-x)

=

f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)


转载请注明原文地址:https://juke.outofmemory.cn/read/2891146.html

最新回复(0)