根据数学书本定义:整数和分数统称为有理数。
①有理数主要是和无理数对应的,无理数是无限不循环小数,比如:5121231234,有很多根式也是无理数,比如√2、√3、√17,但不是所有的根式都是无理数,比如√4、√81
②有理数一定是有限的,或者是无限循环的,注意:循环两个字。
③易混淆的概念:小数一定是有理数,这是错误的。因为小数分为:有限小数、无限循环小数、无限不循环小数。而其中的无限不循环小数就是无理数。所以,一定不能说小数就是有理数!
④所有的有理数一定能转化成分数形式,即下图形式:
有理数是 整数 和 分数 的统称,一切有理数都可以化成分数的形式。
有理数可包括:
(1) 整数 包含了: 正整数 、 0 、 负整数 统称为整数。
(2) 分数 包含了: 正分数 、 负分数 统称为分数。
当然,至于有限小数、无限循环小数,这些“小数”可都统一成分数。
----资料来源:百度百科
整数和分数。
(正整数、0、负整数)和分数的统称,是整数和分数的集合。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,
因此,有理数也可以定义为十进制循环小数。
整数和分数统称为有理数。整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。扩展资料有理数名词的来源:事实上,这是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”,于是有学者将它译成了“有理数”。但是,这个词来源于古希腊,其词根为ratio,就是“比值、比率”的意思。所以这个词的原意是:可写成两个整数之比形式的数。与之相对,“无理数”就是不能表示为两个整数之比的数,而并非没有道理。那么如果知道了有理数其实是“可写成两个整数之比形式的数”的话,对有理数的概念我们将很容易理解了。分数:5/2、5/3、5/4;整数又是特殊的分数,如5=5/1、1=5/5。
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
有理数可分为整数和分数也可分为三种,一;正数,二;0,三;负数。除了无限不循环小数以外的实数统称有理数。英文:rational number读音:yǒu lǐ shù整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。 无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数。所有有理数的集合表示为Q。以下都是有理数: (1) 整数包含了:正整数、0、负整数统称为整数。 (2)分数包含了:正分数、负分数统称为分数。 (3)小数包含了:有限小数、无限循环小数。而且分数也统称小数,因为分小互化。 如3,-9811,572727272……,7/22都是有理数。全体有理数构成一个集合,即有理数集合,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集,即QR。相关的内容见数系的扩张。有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律a+(
b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac。0a=0 文字解释:一个数乘0还等于0。此外,有理数是一个序域,即在其上存在一个次序关系≤。0的绝对值还是0有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数)。
数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。不是有理数的实数遂称为无理数,即无理数的小数部分是无限不循环的数。
有理数集可用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数、循环小数都可以写成分数的形式,这样的数称为有理数
以上就是关于什么是有理数全部的内容,包括:什么是有理数、有理数的概念是什吗、有理数指的是什么数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!