热力学第零定律的语言表述是:
如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡
热力学第一定律反映了能量守恒和转换时应该遵从的关系,它引进了系统的态函数——内能热力学第一定律也可以表述为:第一类永动机是不可能造成的
不可能把热从低温物体传到高温物体而不引起其他变化,这就是热力学第二定律的克氏表述几乎同时,开尔文以不同的方式表述了热力学第二定律的内容
用熵的概念来表述热力学第二定律就是:在封闭系统中,热现象宏观过程总是向着熵增加的方向进行,当熵到达最大值时,系统到达平衡态第二定律的数学表述是对过程方向性的简明表述
用任何方法都不能使系统到达绝对零度此定律称为热力学第三定律
热力学第二定律是描述热量的传递方向的:
分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展熵是一种不能转化为功的热能熵的改变量等于热量的改变量除以绝对温度高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高物体有秩序时,熵值低;物体无序时,熵值便增高现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加
克劳修斯表述
不可能把热量从低温物体传到高温物体而不引起其他变化
开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响
热力学第三定律是热力学的基本理论,它是一个关于低温现象的定律。由于热力学定律都是大量实验与观察事实的概括,因此对定律的叙述有许多种说法,但各种说法的本质都是相互一致的,且都是等效的。下面来介绍几种有代表性的说法。
第一种说法:当温度趋近于绝对零度时,凝聚系统(即固体和液体)在可逆定温过程中熵的变化等于零。
第二种说法:当温度趋近于绝对零度时,凝聚系统的熵的绝对值趋近于零。
第三种说法:用任何方法都不能使系统达到绝对零度。
热力学第一定律是能量守恒定律。
热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;
开尔文普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。以及熵增表述:孤立系统的熵永不减小。
热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0K)不可达到。
需知:
1824年,法国工程师萨迪·卡诺提出了卡诺定理。德国人克劳修斯(Rudolph Clausius)和英国人开尔文(Lord Kelvin)在热力学第一定律建立以后重新审查了卡诺定理,意识到卡诺定理必须依据一个新的定理,即热力学第二定律。
他们分别于1850年和1851年提出了克劳修斯表述和开尔文表述。这两种表述在理念上是等价的。违背热力学第二定律的永动机称为第二类永动机。
[编辑本段]热力学第一定律热力学第一定律也就是能量守恒定律。
内容
一个热力学系统的内能增量等于外界向他传递的热量与外界对他做功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。)
表达式:△U=W+Q
符号规律
:热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定:
①外界对系统做功,W>0,即W为正值。
②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值
③系统从外界吸收热量,Q>0,即Q为正值
④系统从外界放出热量,Q<0,即Q为负值
⑤系统内能增加,△U>0,即△U为正值
⑥系统内能减少,△U<0,即△U为负值
理解
从三方面理解
1如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W
2如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q
3在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。即△U=W+Q
能量守恒定律
内容
能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。
能量的多样性
物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。
不同形式的能量的转化
“摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。。。这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。
能量守恒的意义
1能的转化与守恒是分析解决问题的一个极为重要的方法,它比机械能守恒定律更普遍。例如物体在空中下落受到阻力时,物体的机械能不守恒,但包括内能在内的总能量守恒。
2能量守恒定律是19世纪自然科学中三大发现之一,也庄重宣告了另一类永动机幻想的彻底破灭。
3能量守恒定律是认识自然、改造自然的有力武器,这个定律将广泛的自然科学技术领域联系起来。
第一类永动机(不可能制成)
不消耗任何能量却能源源不断地对外做功的机器。
其不可能存在,因为违背的能量守恒定律 [编辑本段]热力学第二定律热力学第二定律有几种表述方式:
克劳修斯表述
热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;
开尔文-普朗克表述
不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。
熵表述
随时间进行,一个孤立体系中的熵总是不会减少。
关系
热力学第二定律的两种表述(前2种)看上去似乎没什么关系,然而实际上他们是等效的,即由其中一个,可以推导出另一个。
意义
热力学第二定律的每一种表述,揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。
微观意义
一切自然过程总是沿着分子热运动的无序性增大的方向进行。
第二类永动机(不可能制成)
只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。
∵第二类永动机效率为100%,虽然它不违法能量守恒定律,但大量事实证明,在任何情况下,热机都不可能只有一个热源,热机要不断地把吸取的热量变成有用的功,就不可避免地将一部分热量传给低温物体,因此效率不会达到100%。第二类永动机违法了热力学第二定律。 [编辑本段]热力学第三定律热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。 或者绝对零度(T=0K)不可达到。
RH否勒和EA古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。 [编辑本段]另外 热力学第零定律
热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡 。
(1)热力学第一定律的本质
对于组成不变的封闭体系,内能的改变只能是体系与环境之间通过热和功的交换来体现。
(2)热力学第二定律的本质
在孤立体系中,自发变化的方向总是从较有序的状态向较无序的状态变化,即从微观状态数少的状态向微观状态数多的状态变化,从熵值小的状态向熵值大的状态变化。
(3)热力学第三定律的本质
在0K时任何纯物质的完美晶体的熵值为零。
在统计物理学上,热力学第三定律反映了微观运动的量子化。在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的个图。而是鼓励人们想方高法尽可能接近绝对零度。目前使用绝热去磁的方法已达到106K,但永远达不到0K。
扩展资料:
自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。
能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转移和转化的过程中,能量的总量不变。
物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。
参考资料来源:百度百科--热力学三大定律
热力学定律与公式
第一定律:
△U=Q-W
△U是系统内能改变,Q是系统吸收的热量,W是系统对外做功。
第二定律:
很多种表述,最基本的克劳修斯表述和开尔文表述。
这个定律的一个推论是熵增原理:选取任意两个热力学态A、B,从A到B沿任何可能路径做积分:∫dQ/T,最大的那个定义为熵。孤立系(有限空间)情况下,熵只增不减。
第三定律:
绝对零度永远不可以达到。
似乎没有什么数学表达吧。非要写一个的话:上面的话可以用这个式子表示:P(T→0)→0。
2热力学的四大定律简述如下
热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律——能量守恒定律在热学形式的表现。热力学第二定律——力学能可全部转换成热能, 但是热能却不能以有限次的实验操作全部转换成功 (热机不可得)。
热力学第三定律——绝对零度不可达到但可以无限趋近。热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。
热力学第一定律与能量守恒定律有着极其密切的关系,热力学第二定律是在能量守恒定律建立之后,在探讨热力学的宏观过程中而得出的一个重要的结论。
以上就是关于热力学第零、一、二、三定律分别是什么全部的内容,包括:热力学第零、一、二、三定律分别是什么、什么是热力学第三定律、热力学三大定律内容等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!