1、X(Y)=±2a/b是一条增函数直线和一条减函数直线。圆锥曲线的第二定义是从定点(焦点)到定直线(准线)的距离比为常数(离心率e)椭圆:2a=长轴 2b=短轴 2c=焦距,a^2=b^2+c^2e=c/a 准线:a^2/c。
2、对于椭圆方程(以焦点在X轴为例) x^2/a^2+y^2/b^2=1 (a>b>0 a为长半轴 b为短半轴 c为焦距的一半)(亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比恒小于1时,该直线便是椭圆的准线。)
3、椭圆上P点坐标(x0,y0)0<c/a=(xo+p/2) /丨PF丨<1当动点P到定点O和到定直线X=Xo的距离之比恒小于1时,该直线便是椭圆的准线。准线方程 x=a^2/c x=-a^2/c。
4、对于双曲线方程(以焦点在X轴为例)( x^2/a^2-y^2/b^2=1 (a,b>0)亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比恒大于1时,该直线便是双曲线的准线。)准线方程 x=a^2/c x=-a^2/c。
以上就是关于如何理解椭圆、双曲线和准线全部的内容,包括:如何理解椭圆、双曲线和准线、、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!