R :实数包括有理数和无理数(无理数是指无限不循环小数)
N :自然数像0,1,2,3,…(注:0已被归类为自然数)
没有E表示的集合
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N
2、非负整数集内排除0的集,也称正整数集,记作N+(或N)
3、全体整数的集合通常称作整数集,记作Z
4、全体有理数的集合通常简称有理数集,记作Q
5、全体实数的集合通常简称实数集,记作R
扩展资料集合的表示方法:常用的有列举法和描述法。
1、列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2、描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3、图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
n在数学中不指特定数集。其他英文符号在数学中的意思:N在数学中指的是集合中的自然数集;N在数学中指的是集合中非零自然数集;N+表示正整数集;Z表示集合中的整数集;Q表示有理数集;R表示实数集;R代表实数集;C代表复数集。
自然数简介
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
集合简介
集合(简称集)是数学中一个基本概念,由康托尔提出。它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。
最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。若x是集合A的元素,则记作x∈A。
1、N:非负整数集合或自然数集合{0,1,2,3,…}。
2、N或N+:正整数集合{1,2,3,…}。
3、Z:整数集合{…,-1,0,1,…}。
4、Q:有理数集合。
5、Q+:正有理数集合。
6、Q-:负有理数集合。
7、R:实数集合(包括有理数和无理数)。
8、R+:正实数集合。
9、R-:负实数集合。
10、C:复数集合。
11、∅ :空集(不含有任何元素的集合)。
扩展资料:
集合的性质
1、确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。
2、互异性:集合中任意两个元素都是不同的对象。如写成{3,2,2},等同于{2,3}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。
3、无序性:{a,b,c}{c,b,a}是同一个集合。
4、纯粹性:所谓集合的纯粹性,如集合A={x|x<5},集合A 中所有的元素都要符合x<5,这就是集合纯粹性。
5、完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。
N代表自然数集(非负整数集),而N则表示正整数集,英文是natural
number
Z表示整数集,来自于德语,德语中的整数叫做Zahlen
Q表示的是有理数集,由于两个数之比(商)叫做有理数,商的英文是quotient,所以用Q来表示
R表示集合理论中的实数集,而复数中的实数部分也以此符号为代表,英文是real
number
以上就是关于R,N,E在数学中分别表示什么集合全部的内容,包括:R,N,E在数学中分别表示什么集合、n是什么数集、高一数学n是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!