PCR的原理是什么,它有什么用途

感谢父母的话2023-05-06  35

聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是一种分子生物学技术,用于放大特定的DNA片段。可看作生物体外的特殊DNA复制。

DNA聚合酶(DNA polymerase I)最早于1955年发现 ,而较具有实验价值及实用性的Klenow fragment of E Coli 则是于70年代的初期由Dr H Klenow 所发现,但由于此酶不耐高温,高温能使之变性, 因此不符合使用高温变性的聚合酶链式反应。现今所使用的酶(简称 Taq polymerase), 则是于1976年从 温泉中的细菌(Thermus aquaticus)分离出来的。它的特性就在于能耐高温,是一个很理想的 酶,但它被广泛运用则于80年代之后。PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由 Dr Kjell Kleppe 提出。他发表了第一个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。而现今所发展出来的PCR则于1983由 Dr Kary B Mullis发展出的,Dr Mullis当年服务于PE公司,因此PE公司在PCR界有着特殊的地位。Dr Mullis 并于1985年与 Saiki 等人正式表了第一篇相关的论文。此后,PCR的运用一日千里,相关的论文发表质量可以说是令众多其它研究方法难望其项背。随后PCR技术在生物科研和临床应用中得以广泛应用,成为分子生物学研究的最重要技术。Mullis也因此获得了1993年诺贝尔化学奖。

[PCR原理]

[编辑本段]

DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。

但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。

发现耐热DNA聚合同酶--Taq酶对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。

DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。

但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。发现耐热DNA聚合同酶--Taq酶对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。

原理是:提取组织或细胞中的总RNA,以其中的mRNA作为模板,采用Oligo(dT)或随机引物利用逆转录酶反转录成cDNA。再以cDNA为模板进行PCR扩增,而获得目的基因或检测基因表达。

该技术主要用于:分析基因的转录产物、获取目的基因、合成cDNA探针、构建RNA高效转录系统。

RT- PCR(Reverse Transcription-Polymerase Chain Reaction)即逆转录PCR,是将RNA的反转录(RT)和cDNA的聚合酶链式扩增(PCR)相结合的技术。

首先经反转录酶的作用从RNA合成 cDNA,再以cDNA为模板,扩增合成目的片段。RT-PCR技术灵敏而且用途广泛,可用于检测细胞中基因表达水平,细胞中RNA病毒的含量和直接克隆特定基因的cDNA序列。

作为模板的RNA可以是总RNA、mRNA或体外转录的RNA产物。无论使用何种RNA,关键是确保RNA中无RNA酶和基因组 DNA的污染。

用于反转录的引物可视实验的具体情况选择随机引物、Oligo dT 及基因特异性引物中的一种。对于短的不具有发卡结构的真核细胞mRNA,三种都可。

扩展资料

反转录酶的选择

1、Money 鼠白血病病毒(MMLV)反转录酶:有强的聚合酶活性,RNA酶H活性相对较弱。最适作用温度为37℃。

2、禽成髓细胞瘤病毒(AMV)反转录酶:有强的聚合酶活性和RNA酶H活性。最适作用温度为42℃。

3、Thermus thermophilus、Thermus flavus等嗜热微生物的热稳定性反转录酶:在Mn存在下,允许高温反转录RNA,以消除RNA模板的二级结构。

4、MMLV反转录酶的RNase H突变体:商品名为SuperScript 和SuperScriptⅡ。此种酶较其它酶能多将更大部分的RNA转换成cDNA,这一特性允许从含二级结构的、低温反转录很困难的mRNA模板合成较长cDNA。

参考资料:

百度百科——RT -PCR

聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。

PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。

定点诱变:设计引物时对引物进行修改,使其在某些位点上与扩增模板不相配对,但是又不影响引物与模板的退火,这种引物扩增后的到的产物就是在这些不配对区发生了定点突变。

分子标记的鉴别:RAPD扩增的片断是引物之间的区域,不同个体引物之间的序列长度不同,可以作为物种或个体的一种标记,这是分子水平的标记,也称分子标记。

基因克隆:反向PCR。

基因扩增技术(PCR)聚合酶链反应(polymerase chain reaction简称PCR)又称无细胞分子克隆系统或特异性DNA序列体外引物定向酶促扩增法,是基因扩增技术的一次重大革新。可将极微量的靶DNA特异地扩增上百万倍,从而大大提高对DNA分子的分析和检测能力,能检测单分子DNA或对每10万个细胞中仅含1个靶DNA分子的样品,因而此方法立即在分子生物学、微生物学、医学及遗传学等多领域广泛应用和迅速发展。由于PCR具有敏感性高、特异性强、快速、简便等优点,已在病原微生物学领域中显示出巨大的应用价值和广阔的发展前景。

PCR技术是由Cetus公司和加利福尼亚大学1985年联合创造的,主要贡献者为Kary B mulis和HeneryA、Erlich。该方法首先被应用于人β-珠蛋白DNA的扩增及镰刀状红细胞贫血病的产前诊断。自85年首次报道PCR方法以来,PCR被广泛应用于分子克隆、序列分析、基因突变、遗传病、传染病、性传播性疾病及法医判定和考古研究等多领域、并发挥了越来越大的作用。因而发明人Kary B、mulis获1993年诺贝尔化学奖。

为了使PCR技术在临床上迅速得以普及,我们对该技术的某些程序成功地作了重大改革,使PCR技术变得简单、微量化、不易发生污染,从而使PCR技术常规化成为可能。我们的方法迅速在全国各大医院得到推广。

一、PCR的基本原理和基本程序

PCR扩增DNA的原理是:先将含有所需扩增分析序列的靶DNA双链经热变性处理解开为两个寡聚核苷酸单链,然后加入一对根据已知DNA序列由人工合成的与所扩增的DNA两端邻近序列互补的寡聚核苷酸片段作为引物,即左右引物。此引物范围就在包括所欲扩增的DNA片段,一般需20-30个碱基对,过少则难保持与DNA单链的结合。引物与互补DNA结合后,以靶DNA单链为模板,经反链杂交复性(退火),在Taq DNA聚合酶的作用下以4种三磷酸脱氧核苷(dNTP)为原料按5'到3'方向将引物延伸、自动合成新的DNA链、使DNA重新复制成双链。然后又开始第二次循环扩增。引物在反应中不仅起引导作用,而且起着特异性的限制扩增DNA片段范围大小的作用。新合成的DNA链含有引物的互补序列,并又可作为下一轮聚合反应的模板。如此重复上述DNA模板加热变性双链解开—引物退火复性—在DNA聚合酶作用下的引物延伸的循环过程,使每次循环延伸的模板又增加1倍,亦即扩增DNA产物增加1倍,经反复循环,使靶DNA片段指数性扩增。

PCR的扩增倍数Y=(1+E)n,这里Y是扩增量,n为PCR的循环次数。E为PCR循环扩增效率。设PCR扩增效率E为100%、循环次数n=25次,靶DNA将扩增到33554432个拷贝,即扩增3355万倍:若E为80%、n=20、则扩增数量将下降到1408865拷贝,即扩增产物约丢失93%,若E=100%,n=20,则扩增数量减少1048576个拷贝,扩增产物约减少97%。可见PCR循环扩增效率及循环次数都对扩增数量有很大影响。PCR扩增属于酶促反应,所以,DNA扩增过程遵循酶促动力学原理。靶DNA片段的扩增最初表现为直线上升,随着靶DNA片段的逐渐积累,当引物—模板/DNA/聚合酶达到一定比值时,酶的促化反应趋于饱和,此时靶DNA产物的浓度不再增加,即出现所谓平台效应。PCR反应达到平台期的时间主要取决于反应开始时样品中的靶DNA的含量和扩增效率,起始模板量越多到达平台期的时间就越短、扩增效率越高到达平台期的时间也越短。另外酶的含量,dNTp 浓度,非特异性产物的扩增都对到达平台期时间有影响。

二、PCR的特点

(一)特异性高:首次报导的PCR所用的DNA聚合酶是大肠杆菌的DNAPolymerase I的Klenow大片段,其酶活性在90℃会变性失活,需每次PCR循环都要重新加入Klenow大片段,同时引物是在37℃延伸(聚合)易产生模板—引物之间的碱基错配、致特异性较差,1988年Saiki等从温泉水中分离到的水生嗜热杆菌中提取的热稳定的Taq DNA聚合酶,在热变性处理时不被灭活,不必在每次循环扩增中再加入新酶,可以在较高温度下连续反应,显著地提高PCR产物的特异性,序列分析证明其扩增的DNA序列与原模板DNA一致。扩增过程中,单核苷酸的错误参入程度很低、其错配率一般只有约万分之一,足可以提供特异性分析,选用各型病毒相对的特异寡核苷酸引物。PCR能一次确定病毒的多重感染。如用HPV11和HPV16型病毒引物检测病妇宫颈刮片细胞可以发现部分病人存在HPV11和HPV16两型的双重感染。

(二)高度敏感:理论上PCR可以按2n倍数扩增DNA十亿倍以上,实际应用已证实可以将极微量的靶DNA成百万倍以上地扩增到足够检测分析量的DNA。能从100万个细胞中检出一个靶细胞,或对诸如病人口液等只含一个感染细胞的标本或仅含001pg的感染细胞的特异性片段样品中均可检测。

(三)快速及无放射性:一般在2小时内约可完成30次以上的循环扩增,加上用电泳分析。只需3-4小时便可完成,不用分离提纯病毒,DNA粗制品及总RNA均可作为反应起始物,可直接用临床标本如血液、体液、尿液、洗液、脱落毛发、细胞、活体组织等粗制的DNA的提取液来扩增检测,省去费时繁杂的提纯程序,扩增产物用一般电泳分析即可,不一定用同位素,无放射性易于推广。

(四)简便:扩增产物可直接供作序列分析和分子克隆,摆脱繁琐的基因方法,可直接从RNA或染色体DNA中或部分DNA已降解的样品中分离目的基因,省去常规方法中须先进行克隆后再作序列分析的冗繁程序。已固定的和包埋的组织或切片亦可检测。如在PCR引物端事先构建一个内切酶位点,扩增的靶DNA可直接克隆到M13,PUC19等相应酶切位点的载体中。

(五)可扩增RNA或cDNA:先按通常方法用寡脱氧胸苷引物和逆转录酶将mRNA转变成单链cDNA,再将得到的单链cDNA进行PCR扩增,即使mRNA转录片段只有100ngcDNA中的001%,也能经PCR扩增1ng有242碱基对长度的特异片段,有些外显子分散在一段很长的DNA中,难以将整段DNA大分子扩增和做序列分析。若以mRNA作模板,则可将外显子集中,用PCR一次便完成对外显子的扩增并进行序列分析。

PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物

PCR是一种体外DNA 扩增技术,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性——低温退火——引物

PCR扩增仪

延伸”三步反应的多次循环,使DNA片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段

在环境检测中,靶核酸序列往往存在于—个复杂的混合物如细胞提取液中,且含量很低,对于探测这种复杂群体中的特异微生物或某个基因,杂交就显得不敏感使用PCR技术可将靶序列放大几个数量级,再用探针杂交探测对被扩增序列作定性或定量研究分析微生物群体结构PCR技术常与其他技术结合起来使用,如RT-PCR、竞争PCR、槽式PCR、RAPf)、ARDRA等

以上就是关于PCR的原理是什么,它有什么用途全部的内容,包括:PCR的原理是什么,它有什么用途、DNA酶的PCR原理、RT-PCR的原理是什么有何用途等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3811939.html

最新回复(0)