1、log对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
2、对数函数是6类基本初等函数之一。其中对数的定义:
如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
3、一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
对于对数函数y=logg(x)来说,其定义域为:
1、对数函数的真数g(x)>0;
2、对数函数的底数f(x)>0,且f(x)≠1。
对数函数的底数要大于0且不为1的原因:
在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0,那么log以a为底a的对数就可以等于一切实数,比如log11也可以等于2,3,4,5,等等。
对数函数是以幂为自变量,指数为因变量,底数为常量的函数。其是六类基本初等函数之一。如果a^x =N,那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX就叫做对数函数,其中“log”是拉丁文logarithm的缩写。
以上就是关于LOG2(X+1)的定义域全部的内容,包括:LOG2(X+1)的定义域、log以a为底x的定义域是什么、log的定义域是什么 带你了解对数函数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!