乘积法则(也称莱布尼兹法则),是数学中关于两个函数的积的导数的一个计算法则。由此,衍生出许多其他乘积的导数公式(有些公式是要死记硬背熟练掌握的)。
例如:已知两个连续函数f,g及其导数f′,g′则它们的积fg的导数为:(fg)′= f′g + fg′。
例子:
假设我们要求出f(x) = x2 sin(x)的导数。利用乘积法则,可得f'(x) = 2x sin(x) + x2cos(x)(这是因为x2的导数是2x,sin(x)的导数是cos(x))。
乘积法则的一个特例,是“常数因子法则”,也就是:如果c是实数,f(x)是可微函数,那么cf(x)也是可微的,其导数为(c × f)'(x) = c × f '(x)。
乘积法则可以用来推出分部积分法和除法定则。
向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角]。向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1x2,y1y2)。
向量的乘积公式:
向量a=(x1,y1),向量b=(x2,y2)。
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)。
PS:向量之间不叫"乘积",而叫数量积。如a·b叫做a与b的数量积或a点乘b。
发展历史:
向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。
“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。
以上就是关于什么是乘积求导公式全部的内容,包括:什么是乘积求导公式、向量的乘积怎么求、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!