共轭复数怎么表示

能力素质2023-05-01  21

共轭复数的表示方法:两个实部相等,虚部互为相反数的复数。共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。

复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数,当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

首先你要知道:对于复数x,y,有(x/y)的共轭=x的共轭/y的共轭,(x-y)的共轭=x的共轭-y的共轭,对于加法和乘法也有类似结论,你可以通过设x=a+bi,y=c+di,然后算一算便可轻松证明这个结论。

另外,对于复数z,z的模的平方=zz的共轭,这个证明也很简单

已知x=(a-z)/(1+a的共轭z的共轭)

两边同取共轭得x的共轭=(a的共轭-z的共轭)/(1+az)

两式相乘得:利用zz的共轭=z的模的平方=1化简一下你会发现分子分母一样了,这里省略了一点简单的计算,很抱歉,如需要我之后可以补上

因为分子分母一样了,所以结果为x的模=1,即B选项

e^(ix) = cosx + isinx

e^(-ix) = cosx - isinx

这就是正弦函数跟余弦函数在复数范围内的共轭关系。

这个关系就是欧拉公式(Euler's Formula)

这个公式当初只是一个定义式,后来发现了它的神秘之处:

结合指数函数e^x的运算,它解决了许多了不得的问题:

1、解决了众多的三角学(Trigonometry)本身的难题;

2、解决了交流电里面许多没有虚数概念不能解决的问题;

3、结合偏微分方程,解决了量子化学里面的许多大问题;

、、、、、、、、、、、、、、、、、、、、、、

好好加油,学好复数,学好微积分,就可以学复变函数了,接下去就海阔天空了。

在数学中有共轭这个词,共轭复数。比如说3+4i和3-4i是一对共轭复数,这个i是虚数。

如果两个复数,实部相同,而虚部只是正负号相反,它们就是共轭复数。

例如:

3

+

4i

的共轭复数是

3

-

4i;

3

+

5i

的共轭复数是

3

-

5i;

4

+

3i

的共轭复数是

4

-

3i;

-3

+

4i

的共轭复数是

-3

-

4i;

-4x

-

5i

的共轭复数是

-4

+

5i;

x

-

yi

的共轭复数是

x

+

yi。

以上就是关于共轭复数怎么表示全部的内容,包括:共轭复数怎么表示、复数和共轭复数的运算、三角函数的共轭复数怎么计算等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3751402.html

最新回复(0)