怎么证明线与面平行

香蕉有种子吗2023-04-30  25

1,线与面不相交,即平行

2,取任意一条垂直于面的直线,并与该线垂直,即线与面平行,或者反过来也可以

3,取一个面与该面平行,若证明该线存在于取得的一个面上,那么线与面平行,或者反过来也可以(反过来即可以线为基本,证明取得的线或面与要求的面平行或垂直)

定理1

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

已知:a∥b,a⊄α,b⊂α,求证:a∥α

反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α

∵a∥b,∴A不在b上

在α内过A作c∥b,则a∩c=A

又∵a∥b,b∥c,

∴a∥c,与a∩c=A矛盾。

∴假设不成立,a∥α

向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。

∵b⊂α

∴b⊥p,即p·b=0

∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb

那么p·a=p·kb=kp·b=0

即a⊥p

∴a∥α

定理2

平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

已知:a⊥b,b⊥α,且a不在α上。求证:a∥α

证明:设a与b的垂足为A,b与α的垂足为B。

假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC

∵B∈α,C∈α,b⊥α

∴b⊥BC,即∠ABC=90°

∵a⊥b,即∠BAC=90°

∴在△ABC中,有两个内角为90°,这是不可能的事情。

∴假设不成立,a∥α

扩展资料

法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

计算

对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。

用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。

如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为

如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为

如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。

参考资料来源:百度百科-线面平行

参考资料来源:百度百科-法向量

证明:做垂直交于两个平面的线,两条垂线的间距S,S>0;两条垂线L1,L2,交上平面分别为a,b,交下平面与c,d,连接ab,cd,所以abcd为矩形,所以ab//cd,所以ab//cd所在平面。

面面平行,指的是两个平面平行。如果两个平面没有公共点,则称这两个平面平行。如果两个平面的垂线平行,那么这两个平面平行。如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面也平行。

线面平行判断方法

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。

注:线面平行通常采用构造平行四边形来求证。

证明面面平行方法一

线面垂直:1一条线与平面内两条相交直线垂直一条线在一个平面内,而这个平面与另外一个平面垂直,那么这条线与另外一个平面垂直

面面垂直:一条线与平面内两条相交直线垂直,且有一个平面经过这条线

证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a 在平面α上,b 在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面 γ上,b 在平面γ上

∴a∥b

证明面面平行用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点P,点P∈β

又因为P∈AB,所以P∈α

α、β有公共点P,与命题α∥β不符,所以AB∥β。

直线与平面平行的判定

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

判断直线与平面平行的方法

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的'性质:两个平面平行,则一个平面内的直线必平行于另一个

面面平行命题解答

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点P,点P∈β

又因为P∈AB,所以P∈α

α、β有公共点P,与命题α∥β不符,所以AB∥β。

线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

三垂线定理 如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

以上就是关于怎么证明线与面平行全部的内容,包括:怎么证明线与面平行、怎样用向量法证线面平行、怎样通过面面平行证明线面平行等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3737157.html

最新回复(0)