这些都是根据定义来证明
1、奇函数加上奇函数等于奇函数
设f(x)、g(x)都是奇函数,而且h(x)=f(x)+g(x)
那么h(-x)=f(-x)+g(-x)=-f(x)-g(x)=-(f(x)+g(x))=-h(x)
所以h(x)为奇函数
2、偶函数加偶函数等于偶函数
设f(x)、g(x)都是偶函数,而且h(x)=f(x)+g(x)
那么h(-x)=f(-x)+g(-x)=f(x)+g(x)=h(x)
所以h(x)为偶函数
3、奇函数加偶函数等于非奇非偶函数
设f(x)是奇函数,g(x)是偶函数,而且h(x)=f(x)+g(x)
那么h(-x)=f(-x)+g(-x)=-f(x)+g(x)
显然h(-x)不等于h(x),也不等于-h(x)
所以h(x)为非奇非偶函数
4、常数项看成是偶函数
设f(x)=k(k为常数)
f(-x)=k=f(x)
所以f(x)为偶函数
奇函数加偶函数是奇函数。
若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。奇函数与偶函数相加的结果为奇函数。
函数奇偶性口诀
奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数,上述奇偶函数乘法规律可总结为:同偶异奇。
函数表示方法
1、解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
2、列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。
3、图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的。
4、语言叙述法
使用语言文字来描述函数的关系。
设f(x),g(x)为奇函数,
t(x)=f(x)+g(x),
t(-x)=f(-x)+g(-x)
=-f(x)+(-g(x))
=-t(x)
所以奇函数加奇函数还是奇函数
以上就是关于奇函数-奇函数等于什么全部的内容,包括:奇函数-奇函数等于什么、奇函数加偶函数是什么函数、奇函数加奇函数等于什么函数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!