对数的导数公式是什么

陆定一2023-04-26  24

对数函数的导数公式:

一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。

底数则要>0且≠1真数>0

并且,在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a>1时)

如果底数一样,真数越小,函数值越大。(0<a<1时)

对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫作以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫作对数的底,N叫作真数。通常我们将以10为底的对数叫作常用对数,以e为底的对数称为自然对数。

特殊运算

如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫作以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫作对数的底数,N叫作真数一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫作对数函数 它实际上就是指数函数的反函数。

对数求导法适用函数法f(x)是乘积形式、商的形式、根式、幂的形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法。这是因为:取对数可将乘法运算或除法运算降格为加法或减法运算,取对数的运算可将根式、幂函数、指数函数及幂指函数运算降格成为乘除运算。

只要是上述形式就可以对等式两边同时求对数,可将幂函数、指数函数及幂指函数运算降格成为乘法运算,可将乘法运算或除法运算降格为加法或减法运算,使求导运算计算量大为减少。之后按照正常等式求法即可。

扩展资料

对数应用

对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。Benford关于领先数字分配的定律也可以通过尺度不变性来解释。

对数也与自相似性相关。例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。

此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程,Fenske方程或能斯特方程。

参考资料来源:百度百科—对数求导法

参考资料来源:百度百科—对数导数

以a为底的X的对数 的导数是1/xlna ,以e为底的是1/x

logax=lnx/lna

∫logaxdx=∫lnx/lnadx=1/lna∫lnxdx

设lnx=t,则x=e^t

∫lnxdx=∫tde^t=te^t-∫e^tdt=te^t-e^t=xlnx-x

所以∫logaxdx=1/lna∫lnxdx=(xlnx-x)/lna

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

以a为底的X的对数的导数是1/xlna,以e为底的是1/x。 

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

相关信息:

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。

logx的导数是1/xlna,以a为底的X的对数的导数是1/xlna,以e为底的是1/x。

自然对数是以常数e为底数的对数,记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。数学中也常见以logx表示自然对数。

e与π的哲学意义

数学讲求规律和美学,可是圆周率π和自然对数e那样基本的常量却那么混乱,就如同两个“数学幽灵”。

人们找不到π和e的数字变化的规律,可能的原因:例如:人们用的是十进制,古人掰指头数数,因为是十根指头,所以定下了十进制,而二进制才是宇宙最朴素的进制,也符合阴阳理论,1为阳,0为阴。

再例如:人们把π和e与那些规整的数字比较,所以觉得e和π很乱,因此涉及“参照物”的问题。那么,如果把π和e都换算成最朴素的二进制,并且把π和e这两个混乱的数字相互比较,就会发现一部分数字规律,e的小数部分的前17位与π的小数部分的第5-21位正好是倒序关系,这么长的倒序,或许不是巧合。

记住两个基本求导公式:(lnx)'=1/x,(loga x)'=1/(xlna),对数的求导都是用这两个公式配上其他求导法则求解。

lnx的对数即ln(lnx)的求导用复合求导公式,即[ln(lnx)]'=1/(lnx) (lnx)'=1/lnx 1/x=1/(xlnx)

令u=(x的平方+ax+b)/x 所以 log 3为底数 (x的平方+ax+b)/x=log 3为底数 u

根据复合函数的求导法则,求导得[1/(uln3)](u)' 自己求出(u)' 再把u带入就行了

以上就是关于对数的导数公式是什么全部的内容,包括:对数的导数公式是什么、如何用对数求导法求导、logx怎么求导等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3689130.html

最新回复(0)