出现了hook效应在体内还有效吗

如何算八字2023-04-25  45

没有。hook效应是由于抗原抗体比例不合适而导致假阴性的现象。这是因为抗原抗体发生特异性反应时,生成结合物的量与反应物的浓度有关。出现了hook效应在体内没有效。钩状效应即HOOK效应,是指由于抗原抗体比例不合适而导致假阴性的现象,其中抗体过量叫做前带效应;抗原过量叫做后带效应。

纳米金

金的微小颗粒

纳米金即指金的微小颗粒,其直径在1~100nm,具有高电子密度、介电特性和催化作用,能与多种生物大分子结合,且不影响其生物活性。由氯金酸通过还原法可以方便地制备各种不同粒径的纳米金,其颜色依直径大小而呈红色至紫色。

中文名

纳米金

外文名

AuNPs

直径

1~100nm,

类别

金的微小颗粒

作用

高电子密度、介电特性和催化

发展历史检测技术发展检测应用优点制备方法TA说

发展历史

自从16世纪欧洲现代化学的奠基人、杰出的医师、化学家Paracelsus制备出“饮用金”用来治疗精神类疾病以来,纳米金就开始登上了科学的舞台。1857年英国科学家法拉第在研究道尔顿的理论时,利用氯化金还原出含纳米金的溶液,发现在其中加入少量电解质后,可使溶液由红宝石色变为蓝色,并最终凝集为无色,而加入明胶等大分子物质便可阻止这种变化。尽管当时并不知道原因,但他的发现为纳米金的应用奠定了科学基础。1885年纳米金溶液在美国常作为治疗酗酒的主要成分;1890年Koch医生发现结核杆菌不能够在金的表面存活;1890年纳米金被用来治疗关节炎;1935年芝加哥外科专家Edward等人发现纳米金溶液能有效的减轻患者病痛,强健体质。1939年Kausche和Ruska用电子显微镜观察金颗粒标记的烟草花叶病毒,呈高电子密度细颗粒状。1971年Faulk和Taylor首次采用免疫金染色(immunogold staining,IGS)将兔抗沙门氏菌抗血清与纳米金颗粒结合,用直接免疫细胞化学技术检测沙门氏菌的表面抗原,开创了纳米金免疫标记技术。

检测技术发展

作为现代四大标记技术之一的纳米金标记技术(nanogold labelling techique),实质上是蛋白质等高分子被吸附到纳米金颗粒表面的包被过程。吸附机理可能是纳米金颗粒表面负电荷,与蛋白质的正电荷基团因静电吸附而形成牢固结合,而且吸附后不会使生物分子变性,由于金颗粒具有高电子密度的特性,在金标蛋白结合处,在显微镜下可见黑褐色颗粒,当这些标记物在相应的配体处大量聚集时,肉眼可见红色或粉红色斑点,因而用于定性或半定量的快速免疫检测方法中。由于球形的纳米金粒子对蛋白质有很强的吸附功能,可以与葡萄球菌A蛋白、免疫球蛋白、毒素、糖蛋白、酶、抗生素、激素、牛血清白蛋白等非共价结合,因而在基础研究和实验中成为非常有用的工具。

纳米金溶胶

作为显微镜示踪物

1978年,Geobegan等将纳米金标记抗体用于普通光镜下检测B淋巴细脑表面膜免疫球蛋白,建立了光镜水平的免疫金染色(immunogold staining,IGS)。1981年 Danscher用银显影方法增强金颗粒的可见度,并提高了灵敏度。Holgate等人于1983年建立了用银显影液光镜下金颗粒的可见性的免疫金银染色法(immunogold-siliver staining,IGSS),利用银的增强作用,加大单独金粒子在光镜下可视粒子的半径,增加了小颗粒金粒子的标记密度,提高了灵敏度。1986年Fritz等人又在IGSS法基础上成功地进行了彩色IGSS法,使得结果更加鲜艳夺目。尽管如此,由于亚硝酸银化合物是光敏性的,需要在暗室里进行标记,实验操作非常的不便,改用非光敏的醋酸银化合物,价格又过于昂贵,所以纳米金在光镜中的应用日渐减少。而利用纳米金的高电子密度,能在电镜下清晰的分辨颗粒,作为在透射电镜(TEM)、扫描电镜(sEM)和荧光显微镜的示踪物在电镜免疫化学和组织化学中得到了广泛应用。

应用于均相溶胶颗粒免疫测定技术

均相溶胶颗粒免疫测定法(sol particle immunoassay, SPIA)是利用免疫学反应时金颗粒凝聚导致颜色减退的原理,将纳米金与抗体结合,建立微量凝集试验检测相应的抗原,如间接血凝一样,用肉眼可直接观察到凝集颗粒。已成功地应用于PCG的检测,直接应用分光光度计进行定量分析。

应用于流式细胞仪

应用荧光素标记的抗体,通过流式细胞仪(Flow CytoMeter,FCM)计数分析细胞表面抗原,是免疫学研究中的重要技术之一。但由于不同荧光素的光谱相互重叠,区分不同的标记很困难。Boehmer等研究发现,纳米金可以明显改变红色激光的散射角,利用纳米金标记的羊抗鼠Ig抗体应用于流式细胞术,分析不同类型细胞的表面抗原,结果纳米金标记的细胞在波长632nm时,90度散射角可放大10倍以上,同时不影响细胞活性。而且与荧光素共同标记,彼此互不干扰。因此,纳米金可作为多参数细胞分析和分选的有效标记物,分析各类细胞表面标志和细胞内含物。

应用于斑点免疫金银染色技术

斑点免疫金银染色法(Dot-IGS,IGSS)是将斑点ELISA与免疫纳米金结合起来的一种方法。将蛋白质抗原直接点样在硝酸纤维膜上,与特异性抗体反应后,再滴加纳米金标记的第二抗体,结果在抗原抗体反应处发生金颗粒聚集,形成肉眼可见的红色斑点,此称为斑点免疫金染色法(Dot-IGS)。此反应可通过银显影液增强,即斑点金银染色法(Dot-IGS/IGSS)。

应用于免疫印迹技术

免疫印迹技术(immunoblotting,IBT)也称为免疫转印技术,其原理是根据各种抗原分子量大小不同,在电泳中行走的速度不同,因而在硝酸纤维素膜上占据的位置也不同;把含有特异性抗体的血清和这一薄膜反应,那么特异性的抗原抗体反应就显色。而纳米金免疫印迹技术相比酶标记免疫印迹技术具有简单、快速、具有相当高的灵敏度。而且应用纳米金将硝酸纤维素膜上未反应抗体进行染色,评估转膜效率,校正抗原一抗体反应的光密度曲线,即可进行定量免疫印迹测定。

应用于斑点金免疫渗滤测定技术

斑点金免疫渗滤测定法(dot immuno-gold filtration assay,DIGFA)是斑点免疫测定法(dot immunoboding assay,DIBA)中的一种,是1982年由Hawkes等人在免疫印迹技术基础上改良发展起来的一项免疫学新技术。其原理完全同斑点免疫金染色法,只是在硝酸纤维膜下垫有吸水性强的垫料,即为渗滤装置。在加抗原(抗体)后,迅速加抗体(抗原),再加金标记第二抗体,由于有渗滤装置,反应很快,在数分钟内即可显出颜色反应。与斑点免疫渗滤测定法(d o t immunotietration assay,DIFA)相比,所不同的是免加底物液,直接由红色胶体金探针显色,结果鲜艳,背景更清楚,可以在室温下保存。该方法已成功地应用于人的免疫缺陷病病毒(HI)的检查和人血清中甲胎蛋白的检测。使用的有HCG试剂盒,AFP试剂盒,消化道肿瘤筛检试剂盒。

应用于免疫层析技术

免疫层析法(gold immunochromatography assay, GICA)是将各种反应试剂以条带状固定在同一试纸条上,待检标本加在试纸条的一端,将一种试剂溶解后,通过毛细作用在层析条上渗滤、移行并与膜上另一种试剂接触,样品中的待测物同层析材料上针对待测物的受体(如抗原或抗体)发生特异性免疫反应。层析过程中免疫复合物被截留、聚集在层析材料的一定区域(检测带),通过可目测的纳米金标记物得到直观的显色结果。而游离标记物则越过检测带,达到与结合标记物自动分离之目的。GICA特点是单一试剂,一步操作,全部试剂可在室温长期保存。这种新的方法将纳米金免疫检测试验推进到~个崭新的阶段。

生物传感器

生物传感器(biosensor)是指能感应(或响应)生物、化学量,并按一定规律将其转换成可用信号(包括电信号、光信号等)输出的器件或装置。在生物传感器方面,纳米金主要设计为免疫传感器,是利用生物体内抗原与抗体专一性结合而导致电化学变化设计而成。另外由于纳米金的氧化还原电位是+168V,具有极强的夺电子能力,能大大提高作为测定血糖的生物传感器葡萄糖氧化酶膜的活性,金颗粒越细,活性越大。

生物芯片

生物芯片是以膜、玻璃、硅等固相介质为载体,其最大的优点在于高通量、并行化、微型化。一次实验可同时检测多种或多份生物样品。生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片。生物芯片用于食品安全检测领域的应用主要包括农药、兽药残留检测,食品微生物检测、动物疫病监测、转基因动物植物检测等。2002年Park等在《Science》杂志上介绍了一种以纳米金为探针的基于电荷检测的新型基因芯片,该芯片具有非常好的灵敏度及特异性,可以在十万分之一比率中检测出单碱基突变的基因片段。

检测应用

食品检测分析一般采用化学分析法(CA)、薄层层析法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC),但需要繁琐、耗时的前处理,样品损失也较大。相对于灵敏度较低的CA和TLC方法,GC、HPLC的灵敏度较高,但操作技术要求高、仪器昂贵,并不适合现场快速测定和普及,而以纳米金为免疫标记物的检测技术正弥补了这些技术的缺点,在现代食品分析检测中的运用也越来越多。

兽药残留

所谓兽药残留是指动物产品的任何可食部分所含兽药的母体化合物及,或其代谢物,以及与兽药有关的杂质的残留。兽药残留既包括原药也包括药物在动物体内的代谢产物。主要的残留兽药有抗生素类、磺胺药类、呋喃药类、抗球虫药、激素药类和驱虫药类。兽药通常是通过在预防和治疗动物疾病用药、在饲料添加剂中使用以及在食品保鲜中引入药物而带来对食品的污染。人长期摄入含兽药的动物性食品后,不但会对人体产生毒性作用,出现过敏反应,而且动物体内的耐药菌株可传播给人体,当人体发生疾病时,就给临床上感染性疾病的治疗带来一定的困难,延误正常的治疗。另外有些残留物还具有致畸、致癌、致突变作用。

Verheijen利用胶体金标记纯化的抗链霉素单克隆抗体,对链霉素的检测限为160ng/ml,检测方便快速,不需要其他试剂和仪器,时间仅需lOmintl41。而使用胶体金免疫层析试纸条,在检测虾肉等组织试样中残留氯霉素(chloramphenicol,CAP)残留时,灵敏度可达到 lng/ml,只需5~10min,并且与类似物没有交叉反应。Yong Jin等也使用金标法来检测动物血浆和牛奶中的新霉素残留,其检测限为10ng/mltl6J。盐酸克伦特罗即β2受体兴奋剂,俗称“瘦肉精”能增强脂解和减慢蛋白质分解代谢,若在畜牧生产中使用,可明显提高饲料转化率和瘦肉率;但使用剂量过大,则会对动物和人(间接)的肝脏、肾脏等器官产生严重的毒副作用。尽管欧盟于1996年禁止在畜牧生产中使用该药(EC Direc. tive 96/22/EC),我国农业部也于1997年明令禁止,但国内“瘦肉精”中毒事件时有发生。刘见使用金标试纸法快速检测检测盐酸克伦特罗,最小检测量达到40ng/ml。商品化的试纸条产品也比较成熟,比利时UCB Bio-products公司开发的Tlhe Beta STAR检测法就是将特定的β-内酰胺受体固定在试纸条上,用胶体金有色微粒作为标记物,5min内可以检测到青霉素和头孢霉素残留。而国内的刘平在用生物电化学传感器检测牛奶中残留的青霉素时,认为使用纳米金将有助于提高传感器的检测限。

动物传染病

动物传染病不但会影响动物养殖经济,也对人类健康构成威胁,联合国粮农组织和世界卫生组织已把预防和控制严重的动物流行病作为其工作重点之一。虾白斑病毒(white spot syndrome virus,WSSV)是阻碍虾养殖业发展的主要因素,至今还没有有效的药物,所以及早检测出病毒,显得尤其重要。Wang Xiaojie等已成功研究了斑点免疫金渗滤法(DIGFA)t19~和金标试纸法来检测虾白斑病毒,其中金标试纸法的检测限为1 μg/ml,而使用银增强,可以达到001μg/ml。赖清金等使用金标试纸条来检测猪瘟病毒,10~15min就能检出结果,并可根据检测结果合理指导猪瘟免疫和建立适宜的免疫程序。禽流感病毒(AIV)是引起禽类急性死亡的烈性、病毒性传染病,而且能感染人,我国许多地区也先后报道有高致病性禽流感的发生,给养禽业造成了重大的经济损失,也严重威胁了人类的健康。刘永德等将兔抗禽流感H5、H9亚型病毒抗体纯化后,分别与制备的胶体金研制成免疫金探针,用改良的渗滤法安全快速地检测被检材料中禽流感H5、H9亚型病毒,3min即可得到结果,检测灵敏度分别为162ug/ml和125μg/ml。

农药残留

农药残留分析的困难包括:样品基质背景复杂、前处理过程繁琐,需要耗费较多的时间、被测成分浓度较低、分析仪器的定性能力受到限制、仪器检测灵敏度不够等一系列问题,但使用金标记的快速检测可以很好的解决以上问题。国内的王朔分别使用纳米金免疫层析和纳米金渗滤法检测西维因的残留,整个检测过程只需5min,检测限也分别达到100ug/L和50μg/L。国内的生物技术公司也开发出了成熟的商品化产品,如克百威农残速测试纸条等。

致病微生物检测

基于金标记的快速检测研究在致病微生物方面比较多,检测的种类也比较多。最早Hasan以免疫磁性分离技术为基础的免疫胶体金技术已成功应用于01群霍乱弧菌(Vibriocholerae)的检测。国内洪帮兴等人研究了以硝酸纤维膜为载体纳米金显色的寡核苷酸芯片技术,为在分子水平快速简便的鉴别致病菌提供了可能,甚至可以检出致病菌的耐药性变异。该芯片技术对大肠埃希氏菌、沙门氏菌、志贺氏菌、霍乱弧菌、副溶血弧菌、变形杆菌、单核细胞增生李斯特菌、蜡样芽孢杆菌、肉毒梭菌和空肠弯曲菌等10种(属)具有高灵敏度和特异性,检出水平可达10CFU/mlt251。殷涌光等在使用集成化手持式Spreeta TM SPR传感器快速检测大肠杆菌时,引入胶体金复合抗体作为二次抗体大幅度增加质量,进一步扩大了检测信号,同时延长胶体金复合抗体与微生物的结合过程,使检测信号进一步稳定与放大,从而显著提高了检测精度,使该传感器对大肠杆菌的检测精度由106 CFU/ml提高到101CFU/ml。金免疫渗滤法重要的食源性致病菌之一大肠埃希氏菌0157:H7,检测通常先以山梨醇麦康凯琼脂(sMAC)进行初筛,然后用生化和血清学试验做鉴定,一般需要24~48h,而采用胶体金免疫渗滤法检测却非常的简便,在很短时间即可得到结果。

在致病菌快速检测中金标试纸条的研究越来越广泛。谢昭聪等应用胶体金免疫层析法检测水产品中霍乱弧菌的研究中,增菌液霍乱弧菌含量为1CFU/ml,通过增菌12h后,即可应用胶体金免疫层析法诊断试剂检出,而一般水产品霍乱弧菌检测所采用的传统常规方法,检测时限长,增菌培养需8~16h,分离培养需14~20h,初步报告需30h以上,实际操作中,需要3d以上才能出报告。肠杆菌科的大属沙门氏菌可引起人的沙门氏菌性食物中毒,王中民等人采用免疫渗滤法可检出85%的引起食物中毒的沙门氏菌,灵敏度为24×107CFU/ml,对最常见的鼠伤寒、猪霍乱和肠炎沙门氏菌,检出率达100%,而采用胶体金免疫层析法的灵敏度为21×106CFU/mlt30j。被美国列为七种主要食源性致死病菌之一的李斯特菌,如果按照传统的分离培养和鉴定技术需要l~2周时间,而采用免疫胶体金层析法只需10min就能得到检测结果,灵敏度达到875%。

真菌毒素的检测

真菌毒素(Mycotoxin)是由真菌(Fungi)产生的具有毒性的二级代谢产物,广泛存在食品和饲料中,人类若误食受污染的食品,就会中毒或诱发一定疾病,甚至癌症。检测食品中的真菌毒素常用理化方法或生物学方法。但理化法需要较昂贵的仪器设备,操作复杂。而运用免疫技术检测真菌毒素敏感性高,特异性强,非常适用于食物样品的检测。D.J.Chiao等使用金标免疫层析法在10min之内即可检测50ng/ml的肉毒杆菌毒素B(BoNT/B),如果使用银增强则其检测限可以达到50pg/ml,而且对A、E型肉毒杆菌毒素没有交叉反应。貉曲霉毒素是曲霉属和青霉属产生的一类真菌毒素,其中毒性最大、与人类健康关系最密切、对农作物的污染最重、分布最广的是赭曲霉素A(OTA),赖卫华等研制的赭曲霉毒素A快速检测胶体金试纸条,检测限达到了10ng/mlt331,远远低于我国对赭曲霉毒素的限量要求5μg/L。黄曲霉毒素B z的快速检测国内也有很多研究,孙秀兰研制的黄曲霉毒素B,金标免疫试纸条,其最低检测限达到2.5ng/ml,而且能定性或半定量检测食品中的黄曲霉毒素B,含量。

优点

随着科学技术的不断发展,食品分析检测技术也在不断地更新、完善和迅速发展,尤其是快速检测技术更能适应现代高效、快速的节奏和满足社会的要求。仪器分析法可以保证数据的精确性和准确性,但其流程仍比较烦琐。尽管以纳米金为标记物的免疫分析法及其它速测技术的开发过程需投入较多资金和较长时间,但具有简单、快速、灵敏度高、特异性强、价廉、样品所需量少等优点,其灵敏度与常规的仪器分析一致,适合现场筛选,而且其中的金免疫层析技术正在向定量、半定量检测和多元检测的方向发展,更加体现出金标技术的优势。总之,快速检测技术的快速、灵敏、简便等优点,使之在食品卫生检疫和环境检测中有着广泛的应用价值和发展前景。

制备方法

配制浓度为244×10-3 mol/L 的HAuCl4·4H2O溶液、浓度为343×10-2 mol/L 的Na3C6H5O7·2H2O 溶液、浓度为100×10-4 mol/L 的 PVP 溶液, 以及浓度为0391 mol/L 的NaBH4 溶液备用。在烧杯中加入10 mL 氯金酸溶液, 10 mL 或不加保护剂溶液, 80 mL 三蒸水, 将烧杯置于数显测速恒温磁力搅拌器上, 边加热边搅拌, 搅拌的转速设置为600 r/min, 加热至75℃, 恒温2 min, 用移液管移取一定体积的还原剂(Na3C6H5O7 或NaBH4)溶液,迅速一次加入到上述混合液, 开始计时, 使液体颜色恒定并持续加热一段时间共9 min, 停止加热, 继续搅拌5 min 后, 停止搅拌, 冷却至室温, 所得液体为纳米金溶胶。

由于你问题中有提到酶标二抗,我认为应该是有两种可能,(1)产品为双抗体夹心法检测抗原,这种情况下有些产品可以比如HBSAG一步法,加入样品50ul后立即加入50ul酶标多抗温育30min洗版加底物显色终止即可。(2)产品为间接法,检测抗体,酶标二抗为抗你检测抗体种源的另一种源抗体,如检测人的IgG,可标记鼠抗人-HRP。这种情况是不能混合的因为二抗会与样本中的所有IgG反应,估计会导致类似HOOK效应的结果。

抽血检测,一般用三代酶联合免疫法酶联免疫法,简称ELISA。它的中心就是让抗体与酶复合物结合,然后通过显色来检测。步骤:ELISA用血清来检测,首先血液要经过至少半个小时的凝集,然后取血清(这是有些网友不理解为什么医院抽完了血对血置之不理的原因,其实是误会)。将酶复合物用稀释液稀释后,加血清及阴性、阳性对照,还有就是质控品(这是严格的要求,它的范围必须在质控范围内)。经过一个小时的孵育,然后洗板,加底物,半个小时避光反应后加终止液即完成反应部分,然后就是读数。由数值来判断结果的阴性或阳性。严格的讲,如果第一次检测为阳性的话,无论是哪个实验室,必须按照CDC的HIV操作规程来进行第二次检测,第二次的方法必须与第一次的不同,如还是阳性,将送确认实验室确认。有的医院很不负责,将初筛阳性的报告发出后就不管了,这是不对的。必须经过确认实验室确认后才可出阳性诊断。祝大家。PS,第一次检测为阳性的话,一定要去确认实验室再做一次,勇敢的去面对,也许结果就不一样了。基本原理是:①使抗原或抗体结合到某种固相载体表面,并保持其免疫活性。②使抗原或抗体与某种酶连接成酶标抗原或抗体,这种酶标抗原或抗体既保留其免疫活性,又保留酶的活性。在测定时,把受检标本(测定其中的抗体或抗原)和酶标抗原或抗体按不同的步骤与固相载体表面的抗原或抗体起反应。用洗涤的方法使固相载体上形成的抗原抗体复合物与其他物质分开,最后结合在固相载体上的酶量与标本中受检物质的量成一定的比例。加入酶反应的底物后,底物被酶催化变为有色产物,产物的量与标本中受检物质的量直接相关,故可根据颜色反应的深浅刊物定性或定量分析。由于酶的催化频率很高,故可极大地地放大反应效果,从而使测定方法达到很高的敏感度。ELISA可用于测定抗原,也可用于测定抗体。在这种测定方法中有3种必要的试剂:①固相的抗原或抗体,②酶标记的抗原或抗体,③酶作用的底物。根据试剂的来源和标本的性状以及检测的具备条件,可设计出各种不同类型的检测方法。具体方法有:(一)双抗体夹心法双抗体夹心法是检测抗原最常用的方法,操作步骤如下:(1)将特异性抗体与固相载体连接,形成固相抗体:洗涤除去未结合的抗体及杂质。(2)加受检标本:使之与固相抗体接触反应一段时间,让标本中的抗原与固相载体上的抗体结合,形成固相抗原复合物。洗涤除去其他未结合的物质。(3)加酶标抗体:使固相免疫复合物上的抗原与酶标抗体结合。彻底洗涤未结合的酶标抗体。此时固相载体上带有的酶量与标本中受检物质的量正相关。(4)加底物:夹心式复合物中的酶催化底物成为有色产物。根据颜色反应的程度进行该抗原的定性或定量。根据同样原理,将大分子抗原分别制备固相抗原和酶标抗原结合物,即可用双抗原夹心法测定标本中的抗体。(二)双位点一步法在双抗体夹心法测定抗原时,如应用针对抗原分子上两个不同抗原决定簇的单克隆抗体分别作为固相抗体和酶标抗体,则在测定时可使标本的加入和酶标抗体的加入两步并作一步(图15-5)。这种双位点一步不但简化了操作,缩短了反应时间,如应用高亲和力的单克隆抗体,测定的敏感性和特异性也显著提高。单克隆抗体的应用使测定抗原的ELISA提高到新水平。在一步法测定中,应注意钩状效应(hookeffect),类同于沉淀反应中抗原过剩的后带现象。当标本中待测抗原浓度相当高时,过量抗原分别和固相抗体及酶标抗体结合,而不再形成夹心复合物,所得结果将低于实际含量。钩状效应严重时甚至可出现假阴性结果。(三)间接法测抗体间接法是检测抗体最常用的方法,其原理为利用酶标记的抗抗体以检测已与固相结合的受检抗体,故称为间接法。操作步骤如下:(1)将特异性抗原与固相载体连接,形成固相抗原:洗涤除去未结合的抗原及杂质。(2)加稀释的受检血清:其中的特异抗体与抗原结合,形成固相抗原抗体复合物。经洗涤后,固相载体上只留下特异性抗体。其他免疫球蛋白及血清中的杂质由于不能与固相抗原结合,在洗涤过程中被洗去。(3)加酶标抗抗体:与固相复合物中的抗体结合,从而使该抗体间接地标记上酶。洗涤后,固相载体上的酶量就代表特异性抗体的量。例如欲测人对某种疾病的抗体,可用酶标羊抗人IgG抗体。(4)加底物显色:颜色深度代表标本中受检抗体的量。本法只要更换不同的固相抗原,可以用一种酶标抗抗体检测各种与抗原相应的抗体。(四)竞争法竞争法可用于测定抗原,也可用于测定抗体。以测定抗原为例,受检抗原和酶标抗原竞争与固相抗体结合,因此结合于固相的酶标抗原量与受检抗原的量呈反比。操作步骤如下:(1)将特异抗体与固相载体连接,形成固相抗体。洗涤。(2)待测管中加受检标本和一定量酶标抗原的混合溶液,使之与固相抗体反应。如受检标本中无抗原,则酶标抗原能顺利地与固相抗体结合。如受检标本中含有抗原,则与酶标抗原以同样的机会与固相抗体结合,竞争性地占去了酶标抗原与固相载体结合的机会,使酶标抗原与固相载体的结合量减少。参考管中只加酶标抗原,保温后,酶标抗原与固相抗体的结合可达最充分的量。洗涤。 (3)加底物显色:参考管中由于结合的酶标抗原最多,故颜色最深。参考管颜色深度与待测管颜色深度之差,代表受检标本抗原的量。待测管颜色越淡,表示标本中抗原含量越多。(五)捕获法测IgM抗体血清中针对某些抗原的特异性IgM常和特异性IgG同时存在,后者会干扰IgM抗体的测定。因此测定IgM抗本多用捕获法,先将所有血清IgM(包括异性IgM和非特异性IgM)固定在固相上,在去除IgG后再测定特异性IgM。操作步骤如下:(1)将抗人IgM抗体连接在固相载体上,形成固相抗人IgM。洗涤。(2)加入稀释的血清标本:保温反应后血清中的IgM抗体被固相抗体捕获。洗涤除去其他免疫球蛋白和血清中的杂质成分。(3)加入特异性抗原试剂:它只与固相上的特异性IgM结合。洗涤。(4)加入针对特异性的酶标抗体:使之与结合在固相上的抗原反应结合。洗涤。(5)加底物显色:如有颜色显示,则表示血清标本中的特异性IgM抗体存在,是为阳性反应。(六)应用亲和素和生物素的ELISA亲和素是一种糖蛋白,可由蛋清中提取。分子量60kD,每个分子由4个亚基组成,可以和4个生物素分子亲密结合。现在使用更多的是从链霉菌中提取的链霉和素(strepavidin)。生物素(biotin)又称维生素H,分子量24431,存在于蛋黄中。用化学方法制成的衍生物,生物素-羟基琥珀亚胺酯(biotin-hydroxysuccinimide,BNHS)可与蛋白质、糖类和酶等多种类型的大小分子形成生物素化的产物。亲和素与生物素的结合,虽不属免疫反应,但特异性强,亲和力大,两者一经结合就极为稳定。由于1个亲和素分子有4个生物素分子的结合位置,可以连接更多的生物素化的分子,形成一种类似晶格的复合体。因此把亲和素和生物素与ELISA偶联起来,就可大提高ELISA的敏感度。亲和素-生物素系统在ELISA中的应用有多种形式,可用于间接包被,亦可用于终反应放大。可以在固相上先预包被亲和素,原用吸附法包被固相的抗体或抗原与生物素结合,通过亲和素-生物素反应而使生物素化的抗体或抗在相化。这种包被法不仅可增加吸附的抗体或抗原量,而且使其结合点充分暴露。另外,在常规ELISA中的酶标抗体也可用生物素化的抗体替代,然后连接亲和素-酶结合物,以放大反应信号。

以上就是关于出现了hook效应在体内还有效吗全部的内容,包括:出现了hook效应在体内还有效吗、纳米金在食品真菌毒素中的应用、ELISA反应中,样品液、抗体、酶标二抗能不能一起加进去啊等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3675255.html

最新回复(0)