要求渐近线,就是求极限,水平、垂直和斜的,思考要全面。三种渐近线:若limf(x)=C,x趋于无穷,则有水平渐近线y=C;若limf(x)=无穷,x趋于x。,则有垂直渐近线x=x。;若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b, x趋于无穷,则有些渐近线y=kx+b。水平的就是指当x→∞时,limitf(x)存在,即limitf(x)=C为某一常数。则y = C 水平渐进线。垂直的就是指当x→C时,y→∞。一般来说,满足分母为0的x,就是所求的渐进线。 x = C 就是垂直渐进线;更一般的渐进线则
这个是我之前回答别人的答案,粘贴过来了,希望有帮助。。。
会有渐进线的函数的形式应该是 (px^n+)/(qx^m+) (其中中的项比第一项的次数小,也就是说第一项是最高次项)
虽然可以不用极限求,但用的是极限的思想
1竖直渐近线:
如果分母=0时x=a,那么竖直渐近线就是 x=a (分母等于0,y的值就趋近于无穷)
2水平渐近线(相当于x趋近无穷时y的值):分三种情况
n>m: 没有 (y随x的递增而递增,所以x趋近无穷时,y也趋近于无穷)
n=m:y=p/q (没学极限的话,记住就行了,大概讲一下吧,分子分母同时除以x^n(也就是x^m),由于x趋近于无穷,中的项全部接近于0,所以分式就相当于 (px^n)/(qx^m),也就是p/q)
n<m:y=0 (分母的增长速度大于分子,所以x趋近无穷时,分母远远大于分子,分式值为0)
这是数学问题吧,
一、图像法
二、基本函数法
看函数是经过基本函数怎样变换得来的,结合原函数可以求得
此外,渐近线分铅垂、水平、斜三类,当初我自学时还掌握得不错,可是……岁月催人老
-----------------------------------------
这是我引用的,可以看出,他一出门就放了一个屁
求渐近线方法
渐近线分为两种//信我的,三种没错
一种是垂直渐近线:
这种渐近线的形式为x=a,也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可
另一种是斜渐近线:
这种渐近线的形式为y=kx+b,反映函数在无穷远点的性态
先求k,k=limf(x)/x
再求b,b=limf(x)-kx
极限过程都是x趋向于无穷大
三种渐近线公式是:
1、水平渐近线:x→+∞或-∞时,y→c,y=c就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线。
2、铅直渐近线:x→a时,y→+∞或-∞,x=a就是f(x)的铅直平渐近线;比如x=0是y=1/x的铅直渐近线。
3、斜渐近线:当x→∞时,y/x极限为某一常数k,则y=kx+b为斜渐近线。
渐近线特点:
无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时双曲线渐近线的方程是y=x。当焦点在y轴上时双曲线渐近线的方程是y=x。
水平渐近线,就是看当x->无穷大时,y是否有极限,如果有极限为a,则y=a就为水平渐近线。比如y=1/x,
当x->无穷时,y->0
则y=0就是它的水平渐近线;
垂直渐近线,就是看是否存在a,当x-->a时,y->无穷大。若有,则函数有垂直渐近线x=a
比如y=1/(x-1),
当x->1时,y->无穷,则x=1就是它的垂直渐近线。
用极限的方法求函数的水平渐近线和竖直渐近线:
1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;
2、若limf(x)=无穷,x趋于x,则有垂直渐近线x=x;
另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。
当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
扩展资料:
注意事项:
1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。
2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。
参考资料来源:百度百科-斜渐近线
以上就是关于怎么求水平渐近线,垂直渐近线,斜渐近线全部的内容,包括:怎么求水平渐近线,垂直渐近线,斜渐近线、垂直渐进线如何计算、渐近线怎么求啊求解等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!