你说的对,这里是不完全能用同理来证明的
存在性和唯一性应该分开证明
存在性用到(空间中)直线平行的定义,即两直线共面但无公共点
所以过两条平行直线的平面是存在的
唯一性用到公理三,因为过这两条直线的平面必需经过A,B,C这三个不共线的点
所以过两条平行直线的平面至多只有一个
综合两方面,经过两条平行直线的平面有且仅有一个
因为这样的平面有且仅有一个,所以说确定了一个平面也没错,是一个意思
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线
。
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面。
(1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面。
(1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何
直线与平面
空
间
二
直
线
平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线
空
间
直
线
和
平
面
位
置
关
系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何
直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角
三垂线定理
在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理
在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面
两个平面平行
判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面
二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直
判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何
多面体、棱柱、棱锥
多面体
定义
由若干个多边形所围成的几何体叫做多面体。
棱柱
斜棱柱:侧棱不垂直于底面的棱柱。
直棱柱:侧棱与底面垂直的棱柱。
正棱柱:底面是正多边形的直棱柱。
棱锥
正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
球
到一定点距离等于定长或小于定长的点的集合。
欧拉定理
简单多面体的顶点数v,棱数e及面数f间有关系:v+f-e=2
基本概念
数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。 立体几何一般作为平面几何的后续课程。立体测绘(Stereometry)是处理不同形体的体积的测量问题。如:圆柱,圆锥, 圆台, 球, 棱柱,棱锥等等。 立体几何空间图形
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。 立体几何形戒指
尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
基本课题
课题内容
包括:
各种各样的几何立体图形(10张)- 面和线的重合 - 两面角和立体角 - 方块, 长方体, 平行六面体 - 四面体和其他棱锥 - 棱柱 - 八面体, 十二面体, 二十面体 - 圆锥,圆柱 - 球 - 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面
公理 (重点)立体几何中有4个公理 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 平行于同一条直线的两条直线平行.
三垂线定理(重点)
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
二面角
定义
平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角。(这条直线叫做二面角的棱,每个半平面叫做二面角的面)
二面角的平面角(重点)
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 平面角是直角的二面角叫做直二面角。 两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
二面角的大小范围(重点)
0≤θ≤π 相交时 0<θ<π,共面时 θ=π或0
二面角的求法(重点)
有六种: 1定义法 2垂面法 3射影定理 4三垂线定理 5向量法 6转化法
高中学习重点就是这些希望对你有帮助。
公理一:如果一条直线上的两个点在一个平面内,那么这条直线上有的点都在该平面内
公理三:经过不在同一条直线上的三点,有且只有一个平面。
推论三:经过两条平行直线,有且只有一个平面。
题知:直线a与b平行
求证:经过它们的平面有且只有一个
解:
点A再直线a上,再从直线b上截取B和C两点
既A、B、C为不共线三点
根据公理三,经过A、B、C有且只有一个平面α
因为B、C属于b
所以由公理一可知b属于α
同理可得a属于α
由此得公理三的第三推论成立
如需要做图或进一步解答请在我百度空间上留言要求。
以上就是关于立体几何公理3经过不在同一直线上的三个点,有且只有一个全部的内容,包括:立体几何公理3经过不在同一直线上的三个点,有且只有一个、高中几何公式 定理有哪些、什么是立体几何等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!