数学有多少分支

历史研究方法2023-02-20  42

数学有26个分支,分别是:

1、数学史

2、数理逻辑与数学基础

3、数论

4、代数学 

5、代数几何学

6、几何学

7、拓扑学

8、数学分析

9、非标准分析

10、函数论

11、常微分方程

12、偏微分方程

13、动力系统

14、积分方程

15、泛函分析

16、计算数学

17、概率论

18、数理统计学

19、应用统计数学

20、应用统计数学其他学科

21、运筹学

22、组合数学

23、模糊数学

24、量子数学

25、应用数学(具体应用入有关学科)

26、数学其他学科

扩展资料:

数学各个领域

基础与哲学

为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。数学逻辑专注于将数学置在一坚固的公理架构上,并研究此一架构的结果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。

现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性,千禧年大奖难题中的P/NP问题就是理论计算机科学中的著名问题。

离散数学

离散数学是指对理论计算机科学最有用处的数学领域之总称,这包含有可计算理论、计算复杂性理论及信息论。可计算理论检验电脑的不同理论模型之极限,这包含现知最有力的模型-图灵机。

复杂性理论研究可以由电脑做为较易处理的程度;有些问题即使理论是可以以电脑解出来,但却因为会花费太多的时间或空间而使得其解答仍然不为实际上可行的,尽管电脑硬件的快速进步。

最后,信息论专注在可以储存在特定媒介内的数据总量,且因此有压缩及熵等概念。做为一相对较新的领域,离散数学有许多基本的未解问题。其中最有名的为P/NP问题-千禧年大奖难题之一。一般相信此问题的解答是否定的。

应用数学

应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。应用数学中的一重要领域为统计学,它利用概率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。

大部份的实验、调查及观察研究需要统计对其数据的分析。(许多的统计学家并不认为他们是数学家,而比较觉得是合作团体的一份子。)数值分析研究有什么计算方法,可以有效地解决那些人力所限而算不出的数学问题;它亦包含了对计算中舍入误差或其他来源的误差之研究。

参考资料来源:百度百科-数学

参考资料来源:国搜百科-数学

数学分支有:1.. 数学史 2.. 数理逻辑与数学基础 a.. 演绎逻辑学 亦称符号逻辑学 b.. 证明论 亦称元数学 c.. 递归论 d.. 模型论 e.. 公理集合论 f.. 数学基础 g.. 数理逻辑与数学基础其他学科 3.. 数论 a.. 初等数论 b.. 解析数论 c.. 代数数论 d.. 超越数论 e.. 丢番图逼近 f.. 数的几何 g.. 概率数论 h.. 计算数论 i.. 数论其他学科 4.. 代数学 a.. 线性代数 b.. 群论 c.. 域论 d.. 李群 e.. 李代数

数学分支有:

1.. 数学史

2.. 数理逻辑与数学基础

a.. 演绎逻辑学 亦称符号逻辑学

b.. 证明论 亦称元数学

c.. 递归论

d.. 模型论

e.. 公理集合论

f.. 数学基础

g.. 数理逻辑与数学基础其他学科

3.. 数论

a.. 初等数论

b.. 解析数论

c.. 代数数论

d.. 超越数论

e.. 丢番图逼近

f.. 数的几何

g.. 概率数论

h.. 计算数论

i.. 数论其他学科

4.. 代数学

a.. 线性代数

b.. 群论

c.. 域论

d.. 李群

e.. 李代数

f.. Kac-Moody代数

g.. 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结

合代数等

h.. 模论

i.. 格论

j.. 泛代数理论

k.. 范畴论

l.. 同调代数

m.. 代数K理论

n.. 微分代数

o.. 代数编码理论

p.. 代数学其他学科

5.. 代数几何学

6.. 几何学

a.. 几何学基础

b.. 欧氏几何学

c.. 非欧几何学 包括黎曼几何学等

d.. 球面几何学

e.. 向量和张量分析

f.. 仿射几何学

g.. 射影几何学

h.. 微分几何学

i.. 分数维几何

j.. 计算几何学

k.. 几何学其他学科

7.. 拓扑学

a.. 点集拓扑学

b.. 代数拓扑学

c.. 同伦论

d.. 低维拓扑学

e.. 同调论

f.. 维数论

g.. 格上拓扑学

h.. 纤维丛论

i.. 几何拓扑学

j.. 奇点理论

k.. 微分拓扑学

l.. 拓扑学其他学科

8.. 数学分析

a.. 微分学

b.. 积分学

c.. 级数论

d.. 数学分析其他学科

9.. 非标准分析

10.. 函数论

a.. 实变函数论

b.. 单复变函数论

c.. 多复变函数论

d.. 函数逼近论

e.. 调和分析

f.. 复流形

g.. 特殊函数论

h.. 函数论其他学科

11.. 常微分方程

a.. 定性理论

b.. 稳定性理论

c.. 解析理论

d.. 常微分方程其他学科

12.. 偏微分方程

a.. 椭圆型偏微分方程

b.. 双曲型偏微分方程

c.. 抛物型偏微分方程

d.. 非线性偏微分方程

e.. 偏微分方程其他学科

13.. 动力系统

a.. 微分动力系统

b.. 拓扑动力系统

c.. 复动力系统

d.. 动力系统其他学科

14.. 积分方程

15.. 泛函分析

a.. 线性算子理论

b.. 变分法

c.. 拓扑线性空间

d.. 希尔伯特空间

e.. 函数空间

f.. 巴拿赫空间

g.. 算子代数

h.. 测度与积分

i.. 广义函数论

j.. 非线性泛函分析

k.. 泛函分析其他学科

16.. 计算数学

a.. 插值法与逼近论

b.. 常微分方程数值解

c.. 偏微分方程数值解

d.. 积分方程数值解

e.. 数值代数

f.. 连续问题离散化方法

g.. 随机数值实验

h.. 误差分析

i.. 计算数学其他学科

17.. 概率论

a.. 几何概率

b.. 概率分布

c.. 极限理论

d.. 随机过程 包括正态过程与平稳过程、点过程等

e.. 马尔可夫过程

f.. 随机分析

g.. 鞅论

h.. 应用概率论 具体应用入有关学科

i.. 概率论其他学科

18.. 数理统计学

a.. 抽样理论 包括抽样分布、抽样调查等

b.. 假设检验

c.. 非参数统计

d.. 方差分析

e.. 相关回归分析

f.. 统计推断

g.. 贝叶斯统计 包括参数估计等

h.. 试验设计

i.. 多元分析

j.. 统计判决理论

k.. 时间序列分析

l.. 数理统计学其他学科

19.. 应用统计数学

a.. 统计质量控制

b.. 可靠性数学

c.. 保险数学

d.. 统计模拟

20.. 应用统计数学其他学科

21.. 运筹学

a.. 线性规划

b.. 非线性规划

c.. 动态规划

d.. 组合最优化

e.. 参数规划

f.. 整数规划

g.. 随机规划

h.. 排队论

i.. 对策论 亦称博弈论

j.. 库存论

k.. 决策论

l.. 搜索论

m.. 图论

n.. 统筹论

o.. 最优化

p.. 运筹学其他学科

22.. 组合数学

23.. 模糊数学

24.. 应用数学 具体应用入有关学科

25.. 数学其他学科


转载请注明原文地址:https://juke.outofmemory.cn/read/2985748.html

最新回复(0)