平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。、
平行四边形的判定
1、两组对边分别平行的四边形是平行四边形(定义判定法)。
2、一组对边平行且相等的四边形是平行四边形。
3、两组对边分别相等的四边形是平行四边形。
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定)。
5、对角线互相平分的四边形是平行四边形。
扩展资料
性质
①平行四边形的对边是平行的(根据定义),因此永远不会相交。
②平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。
③平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。
④任何通过平行四边形中点的线将该区域平分。
⑤任何非简并仿射变换都采用平行四边形的平行四边形。
参考资料来源:百度百科-平行四边形
平行四边形的定义:“两组对边分别平行的四边形称为平行四边形”。
平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。另外,平行四边形的两对角线互相平分“但不一定互相垂直,也不一定相等”。对角线互相垂直的平行四边形是菱形。
平行四边形并不是梯形。但长方形、正方形、菱形是平行四边形的一种。
扩展资料:
平行四边形的性质:
1、两组对边平行且相等、两组对角大小相等。
2、相邻的两个角互补、对角线互相平分,且将平行四边形面积分为四等分、对于平面上任意一点,都存在一条能将任意平行四边形平分为两个面积相等图形、并穿过该点的线。
3、四边边长的平方和等于两条对角线的平方和。
平行四边形的判定:
1、两组对边分别相等的平面四边形是平行四边形、两组对角分别相等的平面四边形是平行四边形。
2、两组邻角分别互补的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形。
3、两组对边分别平行的四边形是平行四边形、对角线相交且互相平分的四边形是平行四边形。
平行四边形的计算:
1、平行四边形的面积公式:底×高,如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
2、平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=a*b*sinα。
3、平行四边形周长,四边之和。可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2*(a+b)。
参考资料来源:百度百科-平行四边形
由四条边组成的图形就是四边形。这句话是错误的。
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。
四边形定义中明确的指出了要是封闭的图形,所以题目中命题缺少条件。故这个命题是错误的。
扩展资料:
四边形的分类:
1、凸四边形
四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。
2、凹四边形
凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。
四边形的性质:
四边形不具有三角形的稳定性,易于变形。但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
平行四边形的性质:
(1)连接任意四边形各边的中点所得图形是平行四边形。
(2)平行四边形的面积等于底和高的积。
(3)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(4)平行四边形是中心对称图形,对称中心是两对角线的交点.
(5)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。