什么是函数的拐点?怎样求拐点?

长张高速2023-02-17  17

若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。

我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

(1)求f''(x);

(2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;

(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

扩展资料

必要条件,设函数f(x)在点

的某领域内具有二阶连续导数,若(

,f(

))是曲线的拐点,则

,但反之不成立。

第一充分条件

直接根据拐点的定义,可以得到曲线存在拐点的第一充分条件。

设函数f(x)在点

的某邻域内具有二阶连续导数,若

的两侧

异号,则(

,f(

))是曲线y=f(x)的一个拐点;若

的两侧

同号,则(

,f(

))不是曲线的拐点。

函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。

函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),那么这个关系式就叫函数关系式,简称函数。

扩展资料:

拐点的求法

可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

⑴求f''(x);

⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;

1、函数的拐点是事物发展过程中运行趋势或运行速率的变化,也就是指凸曲线与凹曲线的连接点,当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。

2、拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。


转载请注明原文地址:https://juke.outofmemory.cn/read/2973868.html

最新回复(0)