三角形角平分线定理内容是:
1、角平分线上的点到这个角两边的距离相等。
2、三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
角平分线定理1是描述角平分线上的点到角两边距离定量关系的定理,也可看作是角平分线的性质。
角平分线定理2是将角平分线放到三角形中研究得出的线段等比例关系的定理,由它以及相关公式还可以推导出三角形内角平分线长与各线段间的定量关系。
验证推导
由三角形面积公式,得
S△ABM=(1/2)·AB·AM·sin∠BAM
S△ACM=(1/2)·AC·AM·sin∠CAM
∵AM是∠BAC的角平分线
∴∠BAM=∠CAM
∴sin∠BAM=sin∠CAM
∴S△ABM:S△ACM=AB:AC
根据:等高底共线,面积比=底长比
可得:S△ABM:S△ACM=MB:MC,则AB:AC=MB:MC
第一性质定理:角平分线上的点到角两边的距离相等
第一性质定理逆定理:在角的内部,到角两边距离相等的点在角的平分线上
第二性质定理:三角形内角平分线分对边所成的两条线段,与夹这个角的两边,对应成比例
很多人不知道角平分线的判定定理,角平分线的判定定理是什么?接下来就来为大家介绍一下。
角平分线的判定定理有两个:
定理一:角平分线上的点到这个角两边的距离相等。
定理二:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
从顶点引出一条射线,把这个角分成两个相同的角,这条线叫做这个角的角平分线,角平分线的性质:角平分线分得的两个角相等,角平分线上的点到角的两边的距离相等。
以上就是为大家介绍了角平分线的判定定理是什么,希望对大家有所帮助。