什么是增根,举个例子是什么?

旧街场2023-02-09  19

增根,是指方程求解后得到的不满足题设条件的根。

解:去分母,x-2=0,

∴x=2。

又因为x-2=0,

∴方程无解

∴方程无意义,X=2是增根。

解分式方程的基本思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

增根,是指方程求解后得到的不满足题设条件的根。一元二次方程与分式方程和其它产生多解的方程在一定题设条件下都可能有增根。

在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。

扩展资料:

增根的解法

解分式方程时出现增根或失根,往往是由于违反了方程的同解原理或对方程变形时粗心大意造成的。

如果不遵从同解原理,即使解整式方程也可能出现增根.例如将方程x-2=0的两边都乘x,变形成x(x-2)=0,方程两边所乘的最简公分母,看其是否为0,是0即为增根。还可以把x代入最简公分母也可。

增根的产生,归根结底都是因为思维的不全面产生的。解题时要保证步步变形的等价性,这种等价性要通过等式和不等式去约束出来,特别是不等式,容易被忽略。如果不得已必须用不等价变形来解题,那么最后千万别忘记通过检验来去掉增根,这种检验也要注意全面性。

增根,是指方程求解后得到的不满足题设条件的根。一元二次方程与分式方程和其它产生多解的方程在一定题设条件下都可能有增根。

在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。

方程的验根

求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。

如果分式本身约分了,也要代入进去检验。在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。


转载请注明原文地址:https://juke.outofmemory.cn/read/2930524.html

最新回复(0)