收敛函数的定义是什么?

分期乐2023-02-09  22

收敛函数的定义:收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性,也就是说存在极限的函数就是收敛函数。

函数收敛和有界的关系,有界不一定收敛。

函数收敛则:在x0处收敛,则必存在x0的一个去心领域,函数在这个去心领域内有界。

当x趋于无穷时收敛,以正无穷为例,则必存在M,使函数在[M,+∞)上有界。

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。

性质:无穷小与有界函数的乘积仍为无穷小。

收敛和收敛性这两个词(在外语中通常是同一个词)有时泛指函数或数列是否有极限的性质,或者按哪一种意义(什么极限过程)有极限。

在这个意义下,数学分析中所讨论的收敛性的不同意义(不同类型的极限过程)大致有:对数列(点列)只讨论当其项序号趋于无穷的收敛性。

对一元和多元函数最基本的有自变量趋于定值(定点)的和自变量趋于无穷的这两类收敛性;对多元函数还有沿特殊路径的和累次极限意义下的收敛性;对函数列(级数)有逐点收敛和一致收敛。

参考-百度百科函数收敛的定义是什么?

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

一般的级数u1+u2+...+un+...,它的各项为任意级数,如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。

经济学中的收敛,分为绝对收敛和条件收敛,绝对收敛是不论条件如何,穷国比富国收敛更快。

扩展资料:

一般的级数u1+u2+...+un+...,它的各项为任意级数,如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则为级数Σun绝对收敛。如果级数Σun收敛,而Σ∣un∣发散,则称级数Σun条件收敛。

条件收敛是技术给定其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。

收敛的定义如下:

1、收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

2、收敛是一个汉语词语,读音为shōu liǎn,意思是收获农作物;征收租税;聚敛;收集;归总;检点行为,约束身心;停止;消失。出自《庄子·让王》。

函数收敛性质:

1、在x0处收敛,则必存在x0的一个去心领域,函数在这个去心领域内有界。

2、当x趋于无穷时收敛,以正无穷为例,则必存在M,使函数在[M,+∞)上有界。

一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。


转载请注明原文地址:https://juke.outofmemory.cn/read/2926774.html

最新回复(0)