相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
公式。
若Y=a+bX,则有:
令E(X) =μ,D(X) =σ。
则E(Y) = bμ+a,D(Y) = bσ。
E(XY) = E(aX + bX) = aμ+b(σ+μ)。
Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。
缺点
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。
当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
若Y=a+bX,则有:
令E(X) =μ,D(X) =σ。
则E(Y) = bμ+a,D(Y) = bσ。
E(XY) = E(aX + bX) = aμ+b(σ+μ)。
Cov(X,Y) = E(XY)−E(X)E(Y) = bσ。
变量间的这种相互关系,称为具有不确定性的相关关系。
⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。
⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。
⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。