二元一次方程的解法

袖珍妈妈电视剧2023-02-03  31

二元一次方程的解法如下:

代入法解二元一次方程组的步骤

1、选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数。

2、将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的)。

3、解这个一元一次方程,求出未知数的值。

4、将求得的未知数的值代入①中变形后的方程中。

求出另一个未知数的值。

5、用“{”联立两个未知数的值,就是方程组的解。

6、最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

其他解法

换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

二元一次方程的解法3种,如下:

1、代入消元法

将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。

2、加减消元法

当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解。

3、图像法

二元一次方程组还可以用作图像的方法,即将相应二元一次方程改写成一次函数的表达式在同坐标系内画出图像,两条直线的交点坐标即二元一次方程组的解。

对二元一次方程的解的理解应注意以下几点:

①一般地,一个二元一次方程的解有无数个,且每一个解都是指一对数值,而不是指单独的一个未知数的值。

②二元一次方程的一个解是指使方程左右两边相等的一对未知数的值;反过来,如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解。

二元一次方程组解法一般是将二元一次方程消元,变成一元一次方程求解。有两种消元方式:1、加减消元法;2、代入消元法。

如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程,有无数个解,若加条件限定有有限个解。二元一次方程组解法一般是将二元一次方程消元,变成一元一次方程求解。

有两种消元方式:

1、加减消元法将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决。

2、代入消元法:通过代入消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。


转载请注明原文地址:https://juke.outofmemory.cn/read/2888914.html

最新回复(0)