数学怎么配方?

pbx2023-02-03  24

配方只适用于等式方程,配方就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了,也就是说配方法这个方法是根据完全平方公式:(a+或-b)平方=a平方+或-2ab+b平方 得出的。

比如你说的这个式子,不是等式就不能用配方法来解,我来举个例子:

2a²-4a+2=0

a²-2a+1=0 (二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)

(a-1)²=0 (上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)

a-1=0(最后等式两边同时开平方)

a=1(得到结果)

扩展资料:

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

参考资料:百度百科-配方法

一般解法

1.配方法

(可解全部一元二次方程)

如:解方程:x^2+2x-3=0

解:把常数项移项得:x^2+2x=3

等式两边同时加1(构成完全平方式)得:x^2+2x+1=4

因式分解得:(x+1)^2=4

解得:x1=-3,x2=1

用配方法解一元二次方程小口诀

二次系数化为一

常数要往右边移

一次系数一半方

两边加上最相当

2.公式法

(可解全部一元二次方程)

首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根

1.当Δ=b^2-4ac<0时 x无实数根(初中)

2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2

3.当Δ=b^2-4ac>0时 x有两个不相同的实数根

当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a

来求得方程的根

3.因式分解法

(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。

如:解方程:x^2+2x+1=0

解:利用完全平方公式因式分解得:(x+1﹚^2=0

解得:x1=x2=-1

4.直接开平方法

(可解部分一元二次方程)

5.代数法

(可解全部一元二次方程)

ax^2+bx+c=0

同时除以a,可变为x^2+bx/a+c/a=0

设:x=y-b/2

方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0

再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0

y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]

来自团队 新兰史海!

我复制的希望对您有帮助

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

解方程

在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根


转载请注明原文地址:https://juke.outofmemory.cn/read/2885993.html

最新回复(0)