如果n阶矩阵A可逆,则A的伴随矩阵A*=│A│A^(-1)。如果A不可逆,可以用初等变化行或(列)。
先确定一下A的秩,如果:秩(A)<n-1,则A*=0。如果:秩(A)=n-1,只能知道:(A*)=1,要根据定义来求。
扩展资料:
一个m行n列的矩阵简称为m*n矩阵,特别把一个n*n的矩阵成为n阶正方阵,或者n阶矩阵,此外,行列式的阶数与矩阵类似,但是行列式必然为一个正方阵。
说一个矩阵为n阶矩阵,即默认该矩阵为一个n行n列的正方阵。高等代数中常见的可逆矩阵,对称矩阵等问题都是建立在这种正方阵基础上的。
参考资料来源:百度百科-伴随矩阵
指与原矩阵形成映射、类似于逆矩阵。伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。
在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 。
相关内容:
当A的秩为n时,A可逆,A*也可逆,故A*的秩为n。
当A的秩为n-1时,根据秩的定义可知,A存在不为0的n-1阶余子式,故A*不等于0,又根据上述公式AA*=0而A的秩小于n-1可知A的任意n-1阶余子式都是0,A*的所有元素都是0,是0矩阵,秩也就是0。