三角形的三心指外心、内心、重心。外心是指三角形三条边的垂直平分线也称中垂线的相交点。用这个点做圆心可以画三角形的外接圆。三角形三条内角平分线的交点叫三角形的内心即内切圆的圆心。
重心是指三角形的三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。
三角形性质:
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360°(外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
三角形有五心。
三角形五心是指三角形的重心、外心、内心、垂心、旁心。三条中线的交点是重心,三边垂直平分线的交点是外心,三条内角平分线的交点为内心,三角形三条高线的交点为垂心。
与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。
扩展资料
三角形的五心有许多重要性质,它们之间也有很密切的联系,如:
(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;
(2)三角形的外心到三顶点的距离相等;
(3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;
(4)三角形的内心、旁心到三边距离相等;
(5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;
(6)三角形的外心是它的中点三角形的垂心;
(7)三角形的重心也是它的中点三角形的重心;
(8)三角形的中点三角形的外心也是其垂足三角形的外心。
参考资料来源:百度百科-三角形五心