0是整数。
整数分为三大类 :
1、正整数,即大于0的整数如,1,2,3······直到n;
2、0既不是正整数,也不是负整数,它是介于正整数和负整数的数;
3、负整数,即小于0的整数如,-1,-2,-3······直到-n。
注:现中学数学教材中规定:零和正整数为自然数。
扩展资料:
0不能做除数(分母、后项)的原因:
1:如果除数(分母、后项)是0,被除数是非零正数时,商不存在。这是由于任何数乘0都不会得出非零正数。但一些领域定义为无穷大(∞),因为∞×0被认为能得到非零正数。
2:如果除数(分母、后项)是0,被除数也等于0,也不行,因为任何数乘0都得0,答案有无穷多个,无法定义。(不定值,NaN)
0性质:
1、在所有实数的绝对值中,0的绝对值是最小的。
2、0乘任何实数都等于0,0除以任何非零实数都等于0;任何实数加上或减去0等于其本身。
3、0没有倒数和负倒数。
4、0不能做分母、除法运算的除数、比的后项。
5、0的正数次方等于0;0的非正数次方(0次方和负数次方)无意义,因为0不能做分母。
6、0不能做对数的底数或真数。
7、0作为小数部分的尾数时,0全部省略小数值不变,通常省略所有的0化简小数。但是保留几位小数时0不可以轻易省略,例如0.5是保留一位小数,0.5000是保留四位小数。
0是整数,因为整数的定义得知,就是像-3,-2,-1,0,1,2,3,10等这样的数称为整数,所以0是整数。
0是介于-1和1之间的整数,是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。
整数整除性:
1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。