什么是平稳序列

风玫瑰2023-01-29  28

定义:在随机过程理论中,平稳序列(Stationary sequence)是指联合概率分布函数不随时间改变的随机序列.如果一个随机序列 {Xn,n≥0}是平稳的,则其随机变量的联合分布函数为:F(X1,X2,…,Xk)=F(X1+t,X2+t,…,Xk+t)(k≥2)

其中F表示为联合分布函数t∈R,且t大于0X1,X2,…,Xk是{Xn,n≥0}中的任意K个随机变量.

在信息处理与传输中,经常遇到一类称为平稳随机序列的重要信号。所谓平稳随机序列,是指它的N维概率分布函数或N维概率密度函数与时间n的起始位置无关。换句话说,平稳随机序列的统计特性不随时间的平移而发生变化。如果将随机序列在时间上平移k,其统计特性满足等式:

地球物理信息处理基础

这类随机序列就称为平稳随机序列。然而,在实际情况中,这一平稳条件很难得到满足,因此常将这类随机序列称为狭义(严)平稳随机序列。大多数情况下,虽然随机序列并不是平稳随机序列,但是它们的均值和均方值却不随时间而改变,其相关函数仅是时间差的函数,一般将这一类随机序列称为广义(宽)平稳随机序列。下面我们重点分析研究这类平稳随机序列。为简单起见,将广义平稳随机序列简称为平稳随机序列。

平稳随机序列的一维概率密度函数与时间无关,因此均值、方差和均方值均与时间无关,它们可分别表示为

μx=E[X(n)]=E[X(n+m)] (1-17)

地球物理信息处理基础

二维概率密度函数仅仅取决于时间差,与起始时间无关;自相关函数与自协方差函数是时间差的函数。自相关函数rxx(m)与自协方差函数cxx(m)(用cxx(m)表示covxx(m))分别为

rxx(m)=E[X(n+m)X*(n)] (1-20)

cxx(m)=E{[X(n+m)-μx][X(n)-μx]*} (1-21)

对于两个各自平稳而且联合平稳的随机序列,其互相关函数为

rxy(m)=rxy(n+m,n)=E[X(n+m)Y*(n)] (1-22)

显然,对于自相关函数和互相关函数,下面公式成立

地球物理信息处理基础

如果对于所有的m,满足rxy(m)=0,则称两个随机序列互为正交。如果对于所有的m,满足rxy(m)=μxμy,cxy(m)=0,则称两个随机序列互不相关。

实平稳随机序列的相关函数、协方差函数具有以下重要性质

(1)自相关函数和自协方差函数是m的偶函数,即

rxx(m)=rxx(-m),cxx(m)=cxx(-m) (1-25)

而互相关函数和互协方差函数有如下关系

rxy(m)=ryx(-m),cxy(m)=cyx(-m) (1-26)

(2)rxx(0)在数值上等于随机序列的平均功率,即

地球物理信息处理基础

(3)

rxx(0)≥|rxx(m)| (1-28)

(4)

地球物理信息处理基础

(5)

上两式说明大多数平稳随机序列内部的相关性随着时间差的变大,愈来愈弱。

(6)

地球物理信息处理基础


转载请注明原文地址:https://juke.outofmemory.cn/read/2820507.html

最新回复(0)