是的,可微一定可导。但是可导不一定可微。
1、可导的充要条件:
左导数和右导数都存在并且相等。
2、可微:
(1)必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
(2)充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
扩展资料:
微分
早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;
虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。
例如公元前五世纪,希腊的德谟克利特(Democritus)提出原子论:他认为宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的「一尺之捶,日取其半,万世不竭」,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。
其他关于无穷、极限的论述,还包括芝诺(Zeno)几个著名的悖论:
其中一个悖论说一个人永远都追不上一只乌龟,因为当那人追到乌龟的出发点时,乌龟已经向前爬行了一小段路,当他再追完这一小段,乌龟又已经再向前爬行了一小段路。芝诺说这样一追一赶的永远重覆下去,任何人都总追不上一只最慢的乌龟。
当然,从现代的观点看,芝诺说的实在荒谬不过;他混淆了「无限」和「无限可分」的概念。人追乌龟经过的那段路纵然无限可分,其长度却是有限的;所以人仍然可以以有限的时间,走完这一段路。
然而这些荒谬的论述,开启了人类对无穷、极限等概念的探讨,对后世发展微积分有深远的历史意味。
另外值得一提的是,希腊时代的阿基米德(Archimedes)已经懂得用无穷分割的方法正确地计算一些面积,这跟现代积分的观念已经很相似。
由此可见,在历史上,积分观念的形成比微分还要早。这跟课程上往往先讨论微分再讨论积分刚刚相反。
参考资料来源:百度百科-可微
参考资料来源:中国知网-多元函数可微、可导、连续之间的关系
可导和可微的关系可导一定可微,可微也一定可导,可微与可导互为充要条件。可微设在的某个领域内有定义,当给定的一个增量,相应的也有增量,若可以表示成,那么称在处可微。
可导极限存在则可导,极限不存在则不可导。导数定义的其他表示形式也是一样,本质上都是极限要存在。
定义:设函数在即的邻域内有定义,若,则称在点处是连续的。定理:当且仅当时,存在。即左极限和右极限存在且相等,极限存在。连续要求满足的条件有:.要在的某邻域内有定义;极限存在。