T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n <30),总体标准差σ未知的正态分布。
T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。
t检验的前提:
1、来自正态分布总体;
2、随机样本 ;
3、均数比较时,要求两样本总体方差相等,即具有方差齐性
扩展资料
t检验可分为单总体检验和双总体检验,以及配对样本检验
1、单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
2、双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
3、配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自常态分配独立样本更改为二群配对样本之观测值之差。
参考资料来源:百度百科-t检验
t检验的适用条件:
1、已知一个总体均数;
2、可得到一个样本均数及该样本标准差;
3、样本来自正态或近似正态总体。
t检验主要用于样本含量较小(例如n <30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。
扩展资料:
选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本 ;均数比较时,要求两样本总体方差相等,即具有方差齐性) 。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。
如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
参考资料来源:百度百科-t检验
1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。
2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。
3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。
4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。
由来
学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。
戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。