数轴是几何图形的。
数轴,为一种特定几何图形。直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共性,所以用直线上无数个点来表示实数。
这时就用一条规定了原点、正方向和单位长度的直线来表示实数。规定右边为正方向时,在这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,正数大于零,零大于负数。
特点
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
每一个有理数都可以用数轴上的一个点来表示;但数轴上的点不都表示有理数。注意:不能出现相同长度表示的不等的量。数轴两端不能画点。
数轴的三要素是原点、正方向、长度单位。
数轴,为一种特定几何图形。直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共性,所以用直线上无数个点来表示实数。
1、原点
数轴上的原点与实数0对应,代表实数0。
2、正方向
对一条水平数轴,通常规定水平向右的方向为其正方向,水平向左的方向为其负方向。
对一条竖直的数轴,通常规定竖直向上的方向为其正方向,竖直向下的方向为其负方向。(注:参照平面直角坐标系中的x轴、y轴)
3、单位长度
(1)数轴上的一个单位长度等于数轴上两个相邻整数点间的距离。
(2)可以根据实际情况,选择任意的长度作为一个数轴的“单位长度”。
(3)同一个数轴上的单位长度及其表示的长度必须相同,不同数轴间的单位长度及其表示的长度可以不同。
数轴上的任意一点都与唯一的一个实数相对应。同时,任何一个实数(不论是有理数,还是无理数)都可以在数轴上找到唯一的点与之对应。
数轴上相同的点表示相同的实数,不同的点表示的实数也不同。即,相同的实数在数轴上对应的点相同,不同的实数在数轴上对应的点不同。
数轴,为一种特定几何图形。直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共性,所以用直线上无数个点来表示实数。
在数轴上,除了数0要用原点表示外,要表示任何一个不为0的有理数,根据这个数的正负号确定它所在数轴的哪一边(通常正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上相应的点。
数轴上某点标1,就是从原点到该点的线段包含1个单位长度,具体长度不限。另外数轴上一个单位长度也不一定表示一个格,比如一个格你也可以标5,可以认为是坐标系出于某种需要被缩小了,这个标5的一个格其实包含了5个单位长度,只是坐标系出于某种需要被缩小,进而更好表示而已。