二阶等差数列是指后项与前项的差值是等差数列。例如:1,3,7,13,21,31,…,后项与前项的差值依次为:2,4,6,8,10,…,这些差值是等差数列,我们称数列1,3,7,13,21,31,…为二阶等差数列。二阶等差数列通项的一般形式为:An=an2+bn+c,类似于二次函数解析式求法,我们可用待定系数法求出其通项公式。
二阶等差数列的通项公式
二阶等差数列通项公式是An=an2+bn+c,按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。
而数列通项公式的求法,通常是由其递推公式经过若干变换得到。对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d,从第一项a1到第n项an的总和,记为Sn。
二阶等差数列是指后项与前项的差值是等差数列。
例如:1,3,7,13,21,31,后项与前项的差值依次为:2,4,6,8,10,这些差值是等差数列,我们称数列1,3,7,13,21,31为二阶等差数列。
【规律求法】二阶等差数列通项的一般形式为:An=an2+bn+c,类似于二次函数解析式求法,我们可用待定系数法求出其通项公式。
等差数列的判定
1、an+1-an=d (d为常数,n∈N*)[或an-an-1=d(n∈N*,n≥2,d是常数)]等价于{an}成等差数列。
2、2an+1=an+an+2(n∈N*),等价于{an}成等差数列。
3、an=kn+b(k,b为常数,n∈N*),等价于{an}成等差数列。
4、Sn=an2+bn(a,b为常数,a不为0,n∈N*),等价于{an}为等差数列。
二阶等差数列公式是2a(n+1)=an+a(n+2),等差数列是常见数列的一种。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……1+2(n-1)。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:na1+n(n-1)d/2或Sn=n(a1+an)/2。以上n均属于正整数。从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。