可微,是指可以对函数进行微分运算。
一个函数可微的定义是:
设函数y= f(x),且f(x)在x的领域内有定义,若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx)(其中A与Δx无关),则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx
多说一句:
数学中的定义,是很严谨的,只能用数学语言表述。
若采用“通俗易懂”的语言来描述,可能就会出现偏差。
可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。
二元函数的条件:
1、二元函数可微的必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。
2、二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。