实数既事无理数又是有理数对不对

实数既事无理数又是有理数对不对,第1张

不对,说反了。有理数无理数都是实数。实数包括有理数和无理数。

一、实数的分类实数包括有理数和无理数。有理数包括整数和分数。整数包括正整数,负整数,和零。

二、实数基本运算:实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

三、实数的性质

①封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

②有序性:实数集是有序的,即任意两个实数a、b必定满足并且只满足下列三个关系之一:a>b,a<b,a=b。

③传递性:即若a>b,且b>c,则有a>c。其次实数还有稠密性,阿基米德性质,完备性。

自然数就是没有负数的整数,即0和正整数。(如0,1,2……)

整数就是没有小数位都是零的数 ,即能被1整除的数(如-1,-2,0,1,……)。

有理数是只有限位小数(可为零位)或是无限循环小数(如1,142,35,1/3,077777……,……)。

实数是相对于虚数而言的,是无理数和有理数的总称。

自然数是正整数

整数是能被1整除的数

有理数是整数和分数(有限小数和无限循环小数)

实数包括有理数和无理数(无限不循环小数)

无限不循环小数,叫做无理数. 注意:(1)无理数应满足三个条件:①是小数;②是无限小数;③不循环.

实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。实数直观地定义为和数轴上的点一一对应的数。0也算,负数也算。

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。

在数轴线上,负数都在0的左侧,最早记载负数的是我国古代的数学著作《九章算术》。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小。

无理数包括这三类:含π的数,如:3π等;非完全平方数的平方根;函数式,如:lg3、sin10°等。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

在数学中,无理数是指所有非有理数的实数;理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。无理数是指实数范围内不能表示成两个整数之比的数。简单来说,无理数就是指在10进制下的无限不循环小数,如圆周率、非完全平方数的平方根等。而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比。

无理数在位置数字系统中的表示不会终止,也不会重复,即不包含数字的子序列。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

1、有理数和无理数统称为实数2、实数和数轴上的点是一一对应的在数轴上,右边的点表示的数比左边的点表示的数大.3、在实数范围内,相反数、倒数、绝对值的意义与有理数范围的相反数、倒数、绝对值的意义完全一样.4、实数可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则与运算律对实数仍然适用.实数理论千百年来,数学爱们都在为整个数学寻找一个可靠的逻辑基础而不懈努力,然而分析的算术化,是以实数为基础的。不弄清实数的本质,不给实数以明确的定义、建立实数大小、运算等理论,连续函数的性质就无法彻底弄清,甚至连柯西收敛准则的充分性也无法严格证明。这就迫使数学家们加快建立数学理论的步伐。实数理论的核心问题是对无理数的认识,早在19世纪前期,柯西就已感到定义无理数的重要性。他在《分析教程》中,把无理数定义为收敛的有理数列的极限,设{yn}是一列有理数,如果存在一个数y,yn-->y,那么y就是一个无理数。这个定义存在逻辑上的毛病。因为有理数序列{yn}不收敛于无理数(即y为有理数),则定义不出无理数;不收敛于有理数,那得不承认y是无理数才行,才能定义它是无是数,这就犯了循环定义的错误。19世纪60年代末以后,出现了几种不同的无理数定义,分别出自维尔期特拉斯、梅雷、康托和戴德金等人之手,但不论他们定义实数的具体方法有何不同,都符合以下三个条件:第一,把不理数当作已知,从有理数出发定义无理数;第二,所定义的褛的性质及其运算律,与有理数所具有的一三,这样定义的实数是完备的,即在极限运算下不会再出现新数。为了避免柯西理数定义中的错误,维尔斯特拉斯坚持了他的表态观点,曾引入"复合数"概念。并用复合数定义有理数。如3(2/3)由3α和2β组成,其中α=1是主要单位,元素β=1/3。一个数已知它由什么元素组成,以及每个元素出现的次数时,就完全确定了,维尔斯特拉斯继而定义无理数如√2定义为1α,4β1γ----康托与梅雷定义的无理数基本相同,以有理数为出发点引进新数类----实数。该数类包括有理数和无理数。在褛理论建树中,戴德金的实数理论是最完整的。人用有理数分割来定义实数这一思想来源于对直线连续性的考虑。人和康托大致同时提出了实数集与直线上的点一一对应假设。这一假设后来称为“康托-戴德金"公理,他想,直线上的有理点是不连续的,必然由无量数填补空位,才能使直线成为连续。如何才能把这些补空位的无理数表示出来?戴德金用全体有理数的一个分割,来表示一个无理数。上面所说的几种无理数定义,都把有理数当作已知的,因为任何一个有理数,都可以写成两个整数之比,因此问题归结为整数。那么对于整数需不需要再下定义呢?对这个问题也产生了分歧,维尔斯特拉斯就认为没必要,有理数逻辑地归为一对整数,对整数的逻辑无须做进一步研究。戴德金则不然,他在《数的性质与意义》一书中,利用集合论思想给出了一个整数理论,虽因过于复杂未被采用,却给皮亚诺以直接启示。1889年,意大利数学家皮亚诺在他的《算术原理新方法》一书中,用公理方法给出了自然数理论,从而完成了整个数系逻辑化工作。皮亚诺出生于都灵,曾任都灵大学讲师和教授,是一位数理逻辑学家。他不像逻辑主义者那样,主张把数学建立在逻辑上,而是主张把逻辑作为数学工具。皮亚诺在《算术原理方法》一书中,使用了一系列符号,如用∈,NO和a+分别表示属于、包含、自然数类和a的下一个自然数等;给出了四个不加定义的原始概念:集合,自然数,后继数和属于;还提出了自然数的五个公理:1)1是自然数;2)1不是任何自然数的后继数;3)每个自然数a都不一个后继数a+;4)如果a+=b+,则a=b;5)如果s是一个含有1的自然数集合,且当s含有a时,也含有a+,则s含有全部自然数。这个公理是数学归纳法的逻辑基础。接着,皮亚诺根据自然数定义整数:设a,b为自然数。则数对(a,)即"a-b"定义整数。当a>b,a/span>有了整数概念,再通过有序对定义有理数:若n,m为整数,则有序对(n,m)(m<>0)即n/m定义一个有理数。这样,皮亚诺应用数学符号和公理方法,在自然数公理的基础上,简明扼要地建立起自然数系、整数系和有理数系。当然用公理的、逻辑的方法构造出来的数系,使一数学家感到很不自然。他们认为这是将本一清楚的概念"做了不可理解的推广,然而,实数理论的建立,谱写了19世纪数学史上辉煌的一章。

以上就是关于实数既事无理数又是有理数对不对全部的内容,包括:实数既事无理数又是有理数对不对、什么是实数,自然数,有理数,无理数、什么叫实数0算吗那负数呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: https://juke.outofmemory.cn/life/3832449.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存