哪个定理解释了正态分布的普遍性


我们可以通过中心极限定理(Central Limit Theorem)来解释正态分布的普遍性。

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二项分布的渐近公式中得到。CF高斯在研究测量误差时从另一个角度导出了它。

PS拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

正态分布概念是由法国数学家棣莫弗(Abraham de Moivre)于1733年首次提出的,后由德国数学家Gauss率先将其应用于天文学研究,故正态分布又叫高斯分布;

高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。

这里的Z(α)表示是服从正态分布的随机变量X的上α分位点,它是一个整体,代表的是一个数,所谓的上α分位点指的是P{X>Z(α)}=α。

注意:这里Z(005)指的服从正态分布的随机变量X,P{X>165}=005。

简介:

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

正态分布是自然界中真实存在的,某个随机变量如果可以被拆分成大量独立同分布随机变量的和,它就近似服从正态分布。

举个例子,一张100道选择题的考卷,每题分值一分,难度相近,那么一个人做这张考卷的得分就是100个随机变量的和,应该近似服从正态分布。

几乎与社会相关的大多是偏态分布,比如一定时间一定空间里的人、车的流量;人口增长与消亡的分布。

几乎与自然相关的大多也是近似的正态分布,比如人或动物的身高分布,体重分布。在天文、生态、医学等等。

正态分布的这种统计特性使得问题变得异常简单,任何具有正态分布的变量,都可以进行高精度分预测。

值得注意的是,大自然中发现的变量,大多近似服从正态分布。

正态分布很容易解释,这是因为:正态分布的均值,模和中位数是相等的,只需要用均值和标准差就能解释整个分布。

扩展资料:

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ=0,σ=1时的正态分布是标准正态分布。

参考资料:

百度百科-正态分布

为什么叫“正态分布”,也有地方叫“常态分布”,这两个名字都不太直观,但如果我们各取一字变为“正常分布”,就很白话了,而这正是“正态分布”的本质含义,Normal Distribution。它太常见了,基本上能描述所有常见的事物和现象:正常人群的身高、体重、考试成绩、家庭收入等等。这里的描述是什么意思呢?就是说这些指标背后的数据都会呈现一种中间密集、两边稀疏的特征。以身高为例,服从正态分布意味着大部分人的身高都会在人群的平均身高上下波动,特别矮和特别高的都比较少见。

你可能不禁要问,这是为什么?我们认为,这其实与我们前面所讲的同质与变异的概念相关(参见课程第三讲 统计学核心思维与统计描述)。因为我们研究的对象具有同质性(比如都是成年的中国男子),所以其特征往往是趋同的,即存在一个基准;但由于个体变异的存在(当然变异不会太大),这些特征又不是完全一致,所以会以一定的幅度在基准的上下波动,从而形成了中间密集,两侧稀疏的特征。

2 连续型随机变量研究区间概率

了解了正态分布的基本思想,我们来看看实际应用中我们需要掌握的要点。首先,正态分布属于“连续型随机变量分布”的一类。我们知道,对于连续型随机变量,我们不关注“点概率”,只关注“区间概率”,这是什么意思?

我们看这个例子,假定随机变量X指是“北京市成年男子的身高”,理论上它可以取任意正数,所以我们把它当做一个连续型随机变量(连续型变量,就是指可以取某一区间或整个实数轴上的任意一个值的变量)来看待。这里,我们先想一想如何计算P(X =187) 即身高恰好完全exactly等于187的概率是多少,这就是所谓的“点概率”。更极端一点,让随机变量Y是[0,1]这个区间上的任意一点,那么Y的取值有多少个呢?无数多个,我们数不清楚,所以Y 取某一个具体的值的概率是1除以无数,即可以看做是0。于是,这里透露一个很重要的结论:连续型随机变量取任意某个确定的值的概率均为0。因此,对于连续型随机变量,我们通常不研究它取某个特定值的概率,而研究它在某一段区间上的取值,比如身高在170~180的概率。

3 概率密度函数

对于初学者来讲,“概率密度”可能是最不友好的一个概念,直接谈概率不行吗,好好的为什么要生出一个“密度”?的确,没有太多数理基础,这个概念着实不太好理解。虽然文字和数学公式上你可能感觉很陌生,但我们特别熟知的那条中间高、两边低的“钟形曲线”恰恰就是正态分布的概率密度曲线。前面我们讲了区间概率,这里你就可以通过区间的角度来理解概率密度曲线:曲线越高,也就代表着这个区别的概率越密集,简单理解成在同样大小的房子里,这个房间的人数更多、更挤。除此之外,另一个关于概率密度函数的重要知识点是,积分(面积)等于概率。随机变量X在某个区间比如(a,b)即a<X<b的概率,就是概率密度曲线在这个区间下的面积,数学上的表达就是密度函数在区间(a, b)上的积分。所以,概率的大小就是“概率密度函数曲线下的面积”的大小,这个不太起眼的概念实际上就决定了你日后是否能理解假设假设中所谓的“拒绝域”。

以上就是关于哪个定理解释了正态分布的普遍性全部的内容,包括:哪个定理解释了正态分布的普遍性、正态分布中的Z值代表什么意义比如说Z(0.05)=1.65,这个1.65代表着什么意思、什么是正态分布等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3809131.html

最新回复(0)