什么是放射性元素以及主要放射性元素一览

什么是放射性元素以及主要放射性元素一览,第1张

随着科技的发展,人们对放射性元素的认识日益加深,普通百姓越来越关注放射性元素对生活的影响。什么是放射性元素呢》下面是我整理的,欢迎阅读。

什么是放射性元素

放射性元素(确切地说应为放射性核素)是能够自发地从不稳定的原子核内部放出粒子或射线(如α射线、β射线、γ射线等),同时释放出能量,最终衰变形成稳定的元素而停止放射的元素。这种性质称为放射性,这一过程叫做放射性衰变。含有放射性元素(如U、Th、Ra等)的矿物叫做放射性矿物。

放射性元素衰变过程

不论是东方还是西方,都有一大批人在追求“点石成金”之术,他们妄想把一些普通的矿石变成黄金。当然,这些炼金术之士的希望都破灭了,因为他们不知道一种物质变成另一种物质的根本在于原子核的变化。不过,类似于“点石成金”的事情一直就在自然界中进行着,这就是伴随着天然放射现象发生的“衰变”。

原子核的衰变

原子核放出α粒子或β粒子,由于核电荷数变了,它在周期表中[1] 的位置就变了,变成另一种原子核。我们把这种变化称之为原子核的衰变。铀-238放出一个α粒子后,核的质量数减少4,电荷数减少2,称为新核。这个新核就是钍-234核。这种衰变叫做α衰变。这个过程可以用下面的衰变方程表示:23892U→23490Th+42He。在这个衰变过程中,衰变前的质量数等于衰变后的质量数之和;衰变前的电荷数等于衰变后的电荷数之和。

大量观察表明,原子核衰变时电荷数和质量数守恒。在α粒子中,新核的质量数于原来的新核的质量数有什么关系相对于原来的核在周期表中的位置,23892U在α衰变时产生的23490Th也具有放射性,它能放出一个β粒子而变为23491Pa(镤)。由于电子的质量比核子的质量小得多,因此,我们可以认为电子的质量为零、电荷数为-1、可以把电子表示为0-1e。这样,原子核放出一个电子后,因为其衰变前后电荷数和质量数都守恒,新核的质量数不会改变但其电荷数应增加1。其衰变方程为:23490Th→23491Pa+0-1e。放出β粒子的衰变叫做β衰变。β衰变的实质在于核内的中子数(10n)转化为了一个质子和一个电子。其转化方程为10n→11H+0-1e,这种转化产生的电子发射到核外,就是β粒子;与此同时,新核少了一个中子,却增加了一个质子。所以,新核质量数不变,而电荷数增加1。2个中子和2个质子能十分紧密地结合在一起,因此在一定的条件下他们会作为一个整体从较大的原子核中被抛射出来,于是,放射性元素就发生了α衰变。

原子核的能量也跟原子的能量一样,其变化是不连续的,也只能取一系列不连续的数值,因此也存在着能级,同样是能级越低越稳定。放射性的原子核在发生α衰变、β衰变时,往往蕴藏在核内的能量会释放出来,使产生的新核处于高能级,这时它要向低能级跃迁,能量以γ光子的形式辐射出来。因此,γ射线经常是伴随α射线和β射线产生的。当放射性物质连续发生衰变时,原子核中有的发生α衰变,有的发生β衰变,同时就会伴随着γ辐射。这时,放射性物质发出的射线中就会同时具有α、β和γ三种射线。

半衰期

放射性同位素衰变的快慢有一定的规律。例如,氡-222经过α衰变为钋-218,如果隔一段时间测量一次氡的数量级就会发现,每过38天就有一半的氡发生衰变。也就是说,经过第一个38天,剩下一半的氡,经过第二个38天,剩有1/4的氡;再经过38天,剩有1/8的氡(图192-3)因此,我们可以用半衰期来表示放射性元素衰变的快慢。放射性元素的原子核有半数发生衰变所需的时间,叫做这种元素的半衰期。不同的放射性元素,半衰期不同,甚至差别非常大。例如,氡-222衰变为钋-218的时间为38天,镭-226衰变为氡-222的时间为1620年,铀-238衰变为钍-234的半衰期竟长达45亿年。衰变是微观世界里原子核的行为,而微观世界规律的特征之一在于“单个的微观世界是不可预测的”,即对于一个特定的氡原子,我们只知道它发生衰变的概率,而不知道它将何时发生衰变。一个特定的氡核可能在下1s就衰变,也可能在10min内发生衰变,也可能在200万年之后再衰变。然而,量子理论可以对大量原子核的行为做出统计预测。例如,对于大量氡核,可以准确地预言在1s后,10min后,或200万年后,各会剩下百分之几没有衰变。放射性元素的半衰期,描述的就是这样的统计规律。放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的化学状态核外部条件都没有关系。一种放射性元素,不管它是以单质的形式存在,还是与其他元素形成化合物,或者对它施加压力、提高温度,都不能改变它的半衰期。这是因为压力、温度与其他元素的化合等,都不会影响原子核的结构。

主要放射性元素一览

1Cs (铯,cesium)

A soft, silvery-white ductile metal, liquid at room temperature, the most electropositive and alkaline of the elements, used in photoelectric cells and to catalyze hydrogenation of some organic compounds Atomic number 55; atomic weight 132905; melting point 285=C; boiling point 690=C; specific gravity 187; valence 1 铯一种质地柔软的银白色韧性金属,室温时为液体,为最具正电性与碱性的元素,用作光电池和某些有机化合物氢化作用的催化剂。原子序数55;原子量132905;熔点285=C;沸点=C;比重187;化合价1

2 Sr (锶,strontium)

A soft, silvery, easily oxidized metallic element that ignites spontaneously in air when finely divided Strontium is used in pyrotechnic compounds and various alloys Atomic number 38; atomic weight 8762; melting point 769=C; boiling point 1,384=C; specific gravity 254; valence 2

锶一种银色易氧化的软金属,被分割时能在空气中自燃。锶被用于烟火材料的复合物和各种合金。原子序数为38;原子量为8762;熔点为769=C;沸点为1,384=C;比重为254;化合价为2

3 Ru(钌,ruthenium)

A hard white acid-resistant metallic element that is found in platinum ores and is used to harden platinum and palladium for jewelry and in alloys for nonmagnetic wear-resistant instrument pivots and electrical contacts Atomic number 44; atomic weight 10107; melting point 2,310=C; boiling point 3,900=C; specific gravity 1241; valence 0, 1, 2, 3, 4, 5, 6, 7, 8

钌一种坚硬的白色抗酸金属元素,在铂矿中可找到它,用于加固铂和钯以制成宝石和化合成非磁性的抗磨损的工具枢纽和电接触器。原子序数44;原子量10107;熔点2,310=C;沸点3,900=C;比重1241;原子价0,1,2,3,4,5,6,7,8

4 I (碘, iodine)

A lustrous, grayish-black, corrosive, poisonous halogen element having radioactive isotopes, especially I 131, used as a medical tracer and in thyroid disease diagnosis and therapy Iodine compounds are used as germicides, antiseptics, and dyes Atomic number 53; atomic weight 1269044; melting point 1135=C; boiling point 18435=C; specific gravity (solid, at 20=C) 493; valence 1, 3, 5, 7

碘一种有光泽的,灰黑色,具有腐蚀性的,有毒的卤元素,有放射性同位素,特别是碘131,被用作医疗上的显迹物和诊断、医治甲状腺疾病。碘化合物被用作杀菌剂、抗感染剂和染料。原子序数53;原子重量1269044;熔点1135=C;沸点18435=C;比重(固体,在20=C时)493;化合价1,3,5,7 See: element

A liquid containing iodine dissolved in ethyl alcohol, used as an antiseptic for wounds

碘酊;碘酒溶于酒精的碘的一种液体,用作防止伤口感染的药剂

5 Co(钴,cobalt)

A hard, brittle metallic element, found associated with nickel, silver, lead, copper,and iron ores and resembling nickel and iron in appearance It is used chiefly for magnetic alloys, high-temperature alloys, and in the form of its salts for blue glass and ceramic pigments Atomic number 27; atomic weight 589332; melting point 1,495=C; boiling point 2,900=C; specific gravity 89; valence 2, 3

钴一种硬而脆的金属元素,与镍、银、铅、铜和铁矿石一起存在,外表像镍和铁。它主要用于磁合金、高温合金、以盐的形式用于蓝色玻璃和陶瓷颜料。原子序数27;原子量589332;熔点1,495=C;沸点2,900=C;比重89;原子价2,3

6 Ba(钡,barium)

A soft, silvery-white alkaline-earth metal, used to deoxidize copper and in various alloys Atomic number 56; atomic weight 13734; melting point 725=C; boiling point 1,140=C; specific gravity 350; valence 2

钡一种柔软,银白色的碱土金属,用来还原铜并用于各种合金。原子序数56;原子量13734;熔点725=C;沸点1,140=C;比重350;化合价2

7 Ce(铈,cerium)

A lustrous, iron-gray, malleable metallic rare-earth element that occurs chiefly in the minerals monazite and bastnaesite, exists in four allotropic states, is a constituent of lighter flint alloys, and is used in various metallurgical and nuclear applications Atomic number 58; atomic weight 14012; melting point 795=C; boiling point 3,468=C; specific gravity 667 to 823; valence 3, 4

铈一种有光泽、铁灰色、可延展的金属稀土元素,主要存在于独居石和氟碳铈矿中,以四种同素异形体存在,是轻燧石合金的成分,在冶金和核能工业上有多种应用。原子序数58;原子量14012;熔点795=C;沸点3,468=C;比重667至823;比重667-823;化合价3,4

See: element

8 U(铀,uranium)

A heavy silvery-white metallic element, radioactive and toxic, easily oxidized, and having 14 known isotopes of which U 238 is the most abundant in nature The element occurs in several minerals, including uraninite and carnotite, from which it is extracted and processed for use in research, nuclear fuels, and nuclear weapons Atomic number 92; atomic weight 23803; melting point 1,132=C; boiling point 3,818=C; specific gravity 1895; valence 2, 3, 4, 5, 6

铀银白色的重金属元素,有放射性并且有毒,容易被氧化。已知有14个同位素,其中U238是自然界含量最多的。这种元素存在如沥青铀矿和钒钾铀矿等几种矿中,并从中提炼和加工,主要用于研究,核燃料和核武器。原子序数为92;原子量为23803;熔点为1,132=C;沸点3,818=C;比重1895;化合价2,3,4,5,6

9 Pu(钚,plutonium)

A naturally radioactive, silvery, metallic transuranic element, occurring in uranium ores and produced artificially by neutron bombardment of uranium Its longest-lived isotope is Pu 244 with a half-life of 76 million years It is a radiological poison, specifically absorbed by bone marrow, and is used, especially the highly fissionable isotope Pu 239, as a reactor fuel and in nuclear weapons Atomic number 94; melting point 640=C; boiling point 3,235=C; specific gravity 1984; valence 3, 4, 5, 6

钚一种天然地放射性银色超铀金属元素,存在于铀矿中,对铀元素进行中子轰击而人工制成。其存在周期最长的同位素是半衰期为七千六百万年的钸244,它是一种核辐射毒素,特别是能被骨髓吸收。尤其是其极具可裂变性的同位素钸239,被用作一种核反应燃料并用在核武器中。原子序数94;熔点640=C;沸点3,235=C;比重1984;化合价3, 4, 5, 6

10 Am(镅,americium)

A white metallic transuranic element of the actinide series, having isotopes with mass numbers from 237 to 246 and half-lives from 25 minutes to 7,950 years Its longest-lived isotopes, Am 241 and Am 243, are alpha-ray emitters used as radiation sources in research Atomic number 95; specific gravity 117; valence 3, 4, 5, 6

镅锕系元素中的一种白色超铀金属元素,其同位素原子序数是从237到246,半衰期从25分钟到7,950年。其寿命最长的同位素镅241和镅243在研究中用作α射线辐射源。原子序数为95;比重117;原子价为3,4,5,6

所有放射性元素的名称为以下几种:

1、天然放射性元素是指那些最初是从自然界发现而不是用人工方法合成的放射性元素。

它们是:钋Po、氡Rn、钫Fr、镭Ra、锕Ac、钍Th、镤Pa、铀U、镎Np、钚Pu。

2、人工放射性元素最初通过人工核反应合成而被鉴定的放射性元素。

它们是:锝、钷、镅、锔、锫、锎、锿、镄、钔、锘、铹、104、105、106、107、108和109号元素。

天然放射性元素的主要用途是:

(1)用作核燃料,如铀235、铀233和钚239。

(2)用作中子源,如钋210-铍中子源、镭226-铍中子源。

(3)用于医疗,如镭或氡用于治疗癌症。人工放射性元素主要用作示踪、辐射和衰变能的利用等。

目录 1 拼音 2 注解 1 拼音

fàng shè xìng yuán sù

2 注解

由核电荷数相同的放射性同位素组成的元素叫放射性元素。从原子核自发地放射出射线,这种性质叫做放射性。有放射性的天然同位素叫天然放射性元素。它们是钋(P0)、氡(Ru)、钫(Fr)、镭(Ra)、锕(Ac)、钍(Th)、镤(Pa)和铀(U)。

人工合成的(如用反应堆生产)有放射性的同位素,叫做人工放射性元素。例如,用α粒子轰击铝而得到的30P是人工放射性元素。在一千几百种放射性同位素中,绝大部分是人工放射性元素。同一放射系的放射性同位素,在放射出射线时,原子核从不稳定向稳定转化,这叫衰变。自然界中有铀放射系、锕放射系和钍放射系三大天然放射性元素系。天然放射性元素的主要用途是:(1)用作核燃料,如铀235、铀233和钚239。(2)用作中子源,如钋210铍中子源、镭226铍中子源。(3)用于医疗,如镭或氡用于治疗癌症。人工放射性元素主要用作示踪、辐射和衰变能的利用等。

放射性元素(确切地说应为放射性核素)能够自发地从原子核内部放出粒子或射线,同时释放出能量,这种现象叫做放射性,这一过程叫做放射性衰变。某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线。

含有放射性元素(如U、Tr、Ra等)的矿物叫做放射性矿物。

原子序数在84以上的元素都具有放射性,原子序数在83以下的某些元素如K、Rb等也具有放射性。

放射性元素 radioactive elements 具有放射性的元素的统称。

指锝、钷和钋,以及元素周期表中钋以后的所有元素。

该类元素的所有同位素都具有放射性,因此命名。

1789年德国化学家M.H.克拉普罗特发现了铀。

1828年瑞典化学家I.J.贝采利乌斯发现了钍。

在当时,铀和钍只被看作是一般的重金属元素。

直到1896年法国物理学家H.贝可勒尔发现铀的放射性,以及1898年M.居里和P.居里发现钋和镭以后,人们才认识到这一类元素都具有放射性,并陆续发现了其他放射性元素。

核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。

放射性元素最早应用的领域是医学和钟表工业。镭的辐射具有强大的贯穿本领,发现不久便成为当时治疗恶性肿瘤的重要工具;镭盐在暗处发光,用于涂制夜光表盘。

后来的应用已深入到人类物质生活的各个领域,例如核电站和核舰艇使用的核燃料,工业、农业和医学中使用的放射性标记化合物,工业探伤、测井(石油)、食品加工和肿瘤治疗所使用的某些放射源等。

那么到底什么是放射性元素呢?

钋和镭的发现,给仔细考察放射性矿物的工作以巨大的推动力。许多化学家都希望能从这类矿物中得到新的发现,新发现也确实接踵而来。

1899年,德比尔纳发现元素锕;1900年,多恩发现新惰性气体氡;克鲁克斯发现铀X;1901年,德马凯发现鑀(后证实是同位素钍230);1902年,卢瑟福和索迪发现钍X……。

这许许多多的放射性物质,包括居里夫妇发现的钋和镭在内,总是与铀或钍一起存在于矿物之中,形影不离。这里不禁要问,它们与铀或钍之间究竟有什么关系呢?

要解决这个问题,首先要弄清楚放射性现象的本质是什么。事实上,在探索新放射性元素的同时,揭露放射性现象本质的工作也在相辅相成、紧张而有成效地开展着。

英国物理学家卢瑟福在1899年就发现,放射性物质放出的射线不是单一的,而可以分出带正电荷的α射线和带负电荷的β射线,前者穿透性较弱,后者穿透性较强。后来又分出一种穿透性很强的不带电荷的γ射线。如果让射线通过磁场或电场,那么这三种射线就分得一清二楚了:偏转角度很大的是β射线;偏向另一方、偏转角度较小的是α射线;不发生偏转的是γ射线。

1900年,多恩在镭制剂中发现惰性气体氡,这是一件非同寻常的事。根据这一事实,卢瑟福和索迪于1902年提出了一个大胆的假说。他们认为,放射性现象是一种元素的原子自发地转变为另一种元素的原子的结果,这个假说很快就得到了证实。1903年,索迪等做了一个实验:将氡焊封在细颈玻璃管内,然后用光谱法测量。他们观测到管内的氡不断消失,而氦则逐渐增加。原子衰变理论就这样建立起来了,它动摇了多少世纪以来作为经典化学基石的“原子不可分、化学元素不可变”的观念。

衰变理论指出了一种放射性元素的原子会衰变成另一种元素的原子,但如果进一步问,究竟衰变成了什么元素的原子呢?衰变理论并没有给出答案。十年以后建立了位移律,终于回答了这个问题。

在放射性物质的研究工作中,通常把发生衰变的物质称为母体,把衰变后生成的物质称为子体。1908年,索迪归纳了大量α衰变母体及其子体的化学性质,发现母体物质发生α衰变后,其化学价总是减少二价,例如六价的铀变成了四价的铀X,四价的钍变成了二价的介钍I,二价的镭变成了零价的惰性气体氡等等。于是,他总结出一条规则:某一元素作α衰变时,生成的子体是周期表中向左移两格的那个元素的原子。1913年,一些科学工作者又总结出另一条规则:某一元素作β衰变时,生成的子体是周期表中向右移一格的那个元素的原子。这两条规则合起来就是通常所说的位移律,它把衰变时放出的射线的性质和原子发生的变化有机地联系起来了。

在这段时间内,还发现某些不同的放射性物质,如鑀和钍、介钍I和镭等,它们的性质竟惊人地相似,如果偶尔把它们混在一起后,用化学方法就无法把它们分开。我们知道,不同的元素一般是可以用化学的方法分离的,不能用化学方法分离的一般是同一种元素。因此,势必得出如下结论:它们虽是不同的放射性物质,但属于同一种元素,于是提出了同位素的概念。所谓同位素就是化学性质相同的一类原子,它们的原子量不同,但原子序数相同,在周期表中占据同一个位置。

有了衰变理论、同位素概念和位移律,那许许多多已经发现的和进一步发现的放射性物质之间的关系,就比较容易搞清楚了。很快就建立起了铀和钍两个放射性衰变系列。

为了便于讨论,我们在这里先把原子核和射线方面的有关知识简要介绍一下。原子由原子核和绕核旋转的电子组成,原子核又由质子和中子组成。电子带1个负电荷,质于带1个正电荷,中子不带电荷。核电荷数(即质子数)在数值上等于元素的原子序数。质子的质量数为1,中子的质量数也为1,电子很轻很轻,其质量一般忽略不计。质子数和中子数之和就是原子核或原子的质量数。α射线又称α粒子,它是氦原子核,由两个质子和两个中子组成,质量数为4,带2个正电荷。β射线又称β粒子,它是电子,带1个负电荷。如果原子发生α衰变,那就是从原子核内放出一个α粒子,因此核电荷数(原子序数)减少2,质量数减少4;如果原子发生β衰变,放出一个电子,那就是相当于核内一个中子转变成了一个质子,因此核电荷数增加1,质量数不变。

放射性原子不但按一定的衰变方式进行衰变,而且衰变的速率也是一定的。某种放射性同位素衰变掉一半所需要的时间,称为该放射性同位素的半衰期。放射系中,始祖同位素的半衰期很长,铀-238的半衰期为45亿年,这与地球的年龄大致相同。钍-232的半衰期更长,达140亿年,正是由于这个缘故,才使它们得以在地球上留存。

不过,放射系中其它成员的半衰期要短得多。最长的不过几十万年;最短的还不到百万分之一秒。显然,它们是不可能在地球上单独存在的。但是,放射系中的每个成员都不但会衰变掉,而且同时也会由于上一个成员的衰变而得到补充,因此只要放射系的始祖元素存在,各中间成员也就决不会消失。这就象水库里的水不会枯竭一样:水库里的水不断流出去,同时又不断由上游的河水得到补充。当放射系中各中间成员衰变掉的量与生成的量相等时,即各成员之间的比值保持恒定不变时,我们就把这种状态称为放射性平衡。

铀和钍两个放射系已经满意地建立起来了,许多放射物质与铀、钍伴生,确实是不无道理的,原来它们都是始祖元素铀或钍的子孙后代。可是问题并没有完全解决,锕在铀矿中的存在一直是一个不够清楚的问题。

经初步测定,锕的半衰期为二、三十年。因此,它之所以能存在于自然界,必须依存于某一个长寿命的放射性同位素。另外,在含铀量不同的铀矿物中,锕量和铀量之间总有一个恒定的比值。由此看来,锕象是铀的后代。

但情况又不尽然。测量结果表明,作为铀的后代的镭,它与铀平衡时的放射性强度,远比锕(或锕的任一后代)与铀平衡时的放射性强度来得大。两者的比值约为97:3。因此锕不可能是铀的主链成员。

根据这一事实,1906年卢瑟福提出了如下的假说:锕及其后代(称为锕放射系)可能是铀放射系中某一成员的分支衰变产生的支系,即某一成员可能发生两种形式的衰变(α衰变和β衰变),百分之九十七变成了镭放射系(镭及其后代),百分之三变成了锕放射系。这既符合衰变理论,又能解释锕总以恒定的比值存在于铀矿中这一事实。

后面我们将看到,卢瑟福的这个假说是错误的。但是卢瑟福关于分支衰变的想法,却在法扬斯研究镭C的放射性时得到了光辉的证实。

1917年皮卡德提出,锕放射系与铀放射系可能根本无关,它的始祖是铀的另一个长寿命同位素,因此锕放射系总能在铀矿中发现,而且与铀放射系的放射性保持着某一恒定的比值。他认为支持这一假说的论据有两个:

(1)按照盖革·努塔尔经验定律,放射性同位素的α射线能量和半衰期之间存在着一定的关系,在双对数固上表示成一些直线。铀放射系和钍放射系各分属一条直线,而锕放射系则为另一直线。如果锕放射系是铀放射系的分支,则代表锕放射系的直线应与代表铀放射系的直线相重合,或在一端与铀放射系的直线相交。事实上却是锕放射系与铀放射系为两条平行的直线。

(2)铀的原子量为23814(这里的原子量数值均为当时的测定值),镭的原子量为22597,两者相差1217。而根据位移律来计算,镭是由铀放出三个α粒子变来的,那么三个α粒子的质量总和仅为1201。铀原子量所以显得较大,可能是由于其中存在一个质量数更大的同位素的缘故。皮卡德将这个假定的铀同位素称为锕铀(AcU)。

卢瑟福和皮卡德假说之间的取舍,按理是可以通过锕放射系成员原子量的测定来决定的。可是由于锕放射系的放射性仅为铀放射系的3%,且各个成员的半衰期均很短,因此测定原子量困难很大。锕的前身镤发现以后,测定镤原子量应该是可能的,因为它在铀矿中的含量可以与镭相比拟。但是由于镤的性质怪癖,大量制取镤一直未能成功。

这个问题的解决应该归功于质谱分析新技术的采用。1927年,阿斯顿用质谱仪测定了普通铅矿中各种铅同位素含量的比值,得到的结果是铅206:铅207:铅208=100:75:175。1929年,他又测定了某铀矿物中各种铅同位素含量的比值,得到的结果是铅206:铅207:铅208=100:107:45,此比值与普通铅矿显著不同。

当时已经知道,铀放射系、钍放射系和锕放射系的最终衰变产物都是铅。铅206是铀放射系的最终衰变产物,所以这一铀矿物中铅206的含量特别多。另外此铀矿物中也含有钍,因此也应该有较多的钍放射系最终衰变产物铅208。但奇怪的是铅208反而比铅207少。

由此得出的结论只能是:铅207是由于铀矿中另一放射性起源生成的,它自然应该是锕放射系的最终衰变产物了。卢瑟福在阿斯顿的文章后面加了一条意见,指出锕放射系应该是独立的。

皮卡德的假说获得了证实。可是他的假说所依赖的根据是很不充分的。首先,铀并没有更重的天然同位素;其次,α射线的能量和半衰期之间的关系在当时也没有足够的精确度可以进行上述论证。

这一过程表明,科学研究中大胆地假设是十分重要的。有了比较充分的事实根据或理论根据,从而提出一些假说,这样当然会使假说最终被证实的可能性变大。但是如果根据蛛丝马迹提出一些假设,只要与当时所知道的事实没有矛盾,仍然应该说是可贵的,因为它为寻找真理开辟了可能走通的新途径。值得回忆的是,贝克勒耳也正是沿着波因凯的错误假说,而作出了放射性现象这一重大发现。当然,最后善于摈弃假说中的不合理部分,这更是科学工作者取得成功的关键一环。

知道了锕放射系的最终衰变产物是铅207,于是可以推得锕的原子量为227,而假定的锕铀的原子量应该为235(或239)。1935年,登普斯特用火花离子源法对铀进行了质谱分析,发现了锕铀(铀235)的谱线。至此才最后确定了锕放射系的始祖同位素,肯定了其质量数为235。历时长达30年之久的锕放射系的起源问题终于找到了答案,这是放射系研究史中最为曲折的问题之一。由于这个放射系的始祖同位素是锕铀,所以通常把它叫乍锕铀放射系。

以后又发现了镎放射系,它是一个人工放射系,该放射系因为没有半衰期足够长的始祖同位素,所以已在地球上消失。值得指出的是,这个人工放射系中的一个成员——镎233,与铀235和钚239一样,是原子能工业中的一种重要的裂变物质。

放射性元素包括天然放射性元素和人工合成放射性元素。天然放射性元素是指那些最初是从自然界发现的放射性元素。

它们是:钋(pō) Po、氡 Rn、钫(fāng)Fr、镭Ra、锕(ā)Ac、钍(tǔ)Th、镤(pú)Pa、铀(yóu)U、镎(ná)Np、钚(bù)Pu

人工合成放射性元素最初通过人工核反应合成而被鉴定的放射性元素。

它们是锝(Tc)、钷(Pm)、砹(At)、镎(Np)、钚(Pu)、镅(Am)、锔(Cm)、锫(Bk)、锎(Cf)、锿(Es)、镄(Fm)、钔(Md)、锘(No)、铹(Lr)、钅卢(Rf)、钅杜(Db)、钅喜(Es)、钅波(Bh)、钅黑(Hs)、钅麦(Mt)和110、111、112号元素。

放射性元素是能够自发地从不稳定的原子核内部放出粒子或射线(如α射线、β射线、γ射线等),同时释放出能量,最终衰变形成稳定的元素而停止放射的元素;被广泛利用在许多方面,如核电站、空间技术、医疗技术、同位素技术等为人类服务。放射性元素分为天然放射性元素和人工放射性元素两类。

在自然界或科学实验中,有一些原子是极不安分的,它们能够自发地产生变化,有高能粒子或Y射线光子从它们的原子核中逃掉。由于原子核中的粒子数的减少,因而这种原子就变成了另外一种原子,而属于同一种元素的原子可以称为这种元素的同位素,这种能够从原子核释放出高能粒子和Y射线的原子,我们一般称之为有放射性的原子,由这种原子构成,或由放射性同位素所组成的元素,就是放射性元素。

放射性元素一般分为两类:天然放射性元素如铀、钍、锕等;另外是人工合成的人工放射性元素,如钷、锔、锝等。化学元素周期表显示的情况表明,在已发现的107种化学元素中,排在靠后的基本上都是放射性元素,并且以人工合成的放射性元素居多。另外一些本身并无放射性的元素,其同位素却具有放射性,这类放射性同位素也占有相当大的比重。

放射性元素都具有一个相同的特点,那就是,其原子不断进行变化并释放高能粒子和Y射线,这种变化根据自身元素的不同,时间则长短不一,长者可达数亿年,短则仅仅为几千分之一秒。因而,我们对于这种放射性元素的寿命很难估测,在化学上通常采用一种称为“半衰期”的计算方法,就是一种元素其衰变为原一半所需的时间。这种半衰期的测定既复杂、又简单,说其复杂,包括对元素内部原子活动情况的测定,这种原子发生变化可能是瞬间完成的,也可能需要很长时间,所以其原子变化是较难观测的;说其简单,这是当原子发生变化后,则很容易计算出其整体变化。放射性元素的半衰期实际上就是对于该元素的稳定性的一种制定。如钍323这种同位素的半衰期为140亿年,那么无论从宏观还是从微观来讲,几乎与非放射元素一样,具有着较高的稳定性。而氦5这种同位素,其半衰期仅仅有一千亿分之一秒,因此人们是很难看到它的存在的。

放射性元素最早是法国物理学家亨利·贝尔勒尔在1896年发现的,从那时起,人们就开始探索放射性元素为什么会有放射性。目前研究结果,使人们对此有了大概的了解和认识,一般元素其原子核中有84个或多于84个质子的元素都是放射性元素。在原子核中,质子是带有正电荷的,根据库仑定律,“同种电荷相互排斥”理论,这种质子之间的相排斥力,使得原子核结构很不稳定。因而,只有放出带正电荷的质子才能保持稳定状态。当质子被释放后,其原子核中质子数目减少,因而就变成了另外一种元素。一种元素是否稳定,主要取决于原子核肉的中子与质子数值的比,即n∶p。这个比值太大或太小都是原子核不稳定的因素所在,通常认为在12∶1-15∶1的范围内,是元素稳定的条件。

放射性元素为什么可以通过释放质子或捕获电子来达到这种稳定状态,以及为什么n∶p在12∶1-15∶1之间,元素才具有稳定性这一现象,目前还无法准确地回答,还有待于科学家的努力。

问题一:放射性元素是什么意思 放射性元素(确切地说应为放射性核素)是能够自发地从不稳定的原子核内部放出粒子或射线(如α射线、β射线、γ射线等),同时释放出能量,最终衰变形成稳定的元素而停止放射的元素。这种性质称为放射性,这一过程叫做放射性衰变。含有放射性元素(如U、Th、Ra等)的矿物叫做放射性矿物。

地球上的一切自然物质中都含有不同数量的放射性元素,整个地球、乃至整个宇宙的一切自然物质,实际上都是由103种天然元素(不包括人造元素)组成的。在103种天然元素中,有一族元素具有放射性特点,被称为“放射性元素族”,所谓“”放射性元素“,是指这些元素的原子核不稳定,在自然界的自然状态下不断地进行核衰变,在衰变过程中放射出αβγ三种射线和有放射性特点的隋性气体氡气。其中的α射线(粒子)实际上是氦(He)元素的原子核,由于它质量大、电离能力强和高速的旋转运行,所以是造成对人体内照射危害的主要射线;β射线是负电荷的电子流;γ射线是类似于医疗透视用的X射线一样和波长很短的电磁波,由于它的穿透力很强,所以是造成人体外照射伤害的主要射线;由衰变而产生的氡(Rn)气是自然界中仍具有放射性特点的惰性气体,由于它还要继续衰变,因此被吸入肺部后,容易造成对人体内照射(特别是对肺)的伤害。

β射线速度接近光

问题二:什么是放射性 放射性是自然界存在的一种自然现象。世界上一切物质都是由一种叫“原子”的微小粒子构成的,每个原子的中心有一个“原子核”。大多数物质的原子核是稳定不变的,但有些物质的原子核不稳定,会自发地发生某些变化,这些不稳定原子核在发生变化的同时会发射各种各样的射线,这种现象就是人们常说的“放射性”。有的放射性物质在地球诞生时就存在,如铀、钍、镭等,它们叫做天然放射性物质。另一方面,人类出于不同的目的制造了一些具有放射性的物质,这种物质叫人工放射性物质。

问题三:什么叫放射性物质 放射性物质

1、放射性的基本概念

某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线。物质的这种性质叫放射性。

2、放射性污染来源及分类

1)、核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。

2)、核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,能对周围环境带来一定程度的污染。

3)、医疗照射引起的放射性污染 目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。

4)、其它各方面来源的放射性污染 其它辐射污染来源可归纳为两类:一 工业、医疗、军队、核舰艇,或研究用的放射源,因运输事故、遗失、偷窃、误用,以及废物处理等失去控制而对居民造成大剂量照射或污染环境;二是一般居民消费用品,包括含有天然或人工放射性核素的产品,如放射性发光表盘、夜光表以及彩色电视机产生的照射,虽对环境造成的污染很低,但也有研究的必要。

3、放射性对人体的危害

在大剂量的照射下,放射性对人体和动物存在着某种损害作用。如在400rad的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。照射剂量在150rad以下,死亡率为零,但并非无损害作用,住往需经20年以后,一些症状才会表现出来。放射性也能损伤遗传物质,主要在于引起基因突变和染色体畸变,使一代甚至几代受害。

4、放射性“三废”处理

放射性废物中的放射性物质,采用一般的物理、化学及生物学的方法都不能将其消灭或破坏,只有通过放射性核素的自身衰变才能使放射性衰减到一定的水平。而许多放射性元素的半衰期十分长,并且衰变的产物又是新的放射性元素,所以放射性废物与其它废物相比在处理和处置上有许多不同之处。

1)放射性废水的处理

放射性废水的处理方法主要有稀释排放法、放置衰变法、混凝沉降法、离子变换法、蒸发法、沥青固化法、水泥固化法、塑料固化法以及玻璃固化法等。

2)放射性废气的处理

(1)铀矿开采过程中所产生废气、粉尘,一般可通过改善操作条件和通风系统得到解决。

(2)实验室废气,通常是进行预过滤,然后通过高效过滤后再排出。

(3)燃料后处理过程的废气,大部分是放射性碘和一些惰性气体。

3)、放射性固体废物的处理和处置

放射性固体废物主要是被放射性物质污染而不能再用的各种物体

(1)焚烧 (2)压缩 (3)去污 (4)包装

问题四:放射性元素的意思是什么 一类元素,能发出射线而衰变成另一种元素,如镭、铀、钚、钫。

以上就是关于什么是放射性元素以及主要放射性元素一览全部的内容,包括:什么是放射性元素以及主要放射性元素一览、放射性元素有哪些、放射性元素简介等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: https://juke.outofmemory.cn/life/3805542.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存