向量a平行向量b的公式

王树增2023-05-05  18

向量a平行向量b的公式:a//b→a×b=xn-ym=0。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0。

对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a;当向量a=(x1,y1),向量b=(x2,y2)时,当x1y2=x2y1时,向量a‖向量b,反之也成立。

两向量平行,推出的计算公式如下:向量a(X1,Y1)

向量b(X2,Y2)

若向量a//向量b

则X1Y2-X2Y1=0

即X1/Y1=X2/Y2a向量(x1,y1)和b向量(x2,y2)

若两向量平行则有x1y2-x2y1=0如果向量A(x1,y1)平行向量B(x2,y2),那么则有A=λB,x1x2-y1y2=o

如果向量A(x1,y1)垂直向量B(x2,y2),那么则有A点击B=0,即x1x2+y1y2=0

两个向量a,b平行:a=λb

(b不是零向量);两个向量垂直:数量积为0,即 a•b=0

坐标表示:a=(x1,y1),b=(x2,y2)

a//b当且仅当x1y2-x2y1=0,a⊥b当且仅当x1x2+y1y2=0

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。

扩展资料:

一、相关概念

零向量:长度等于0的向量叫做零向量,记作0。

相等向量:长度相等且方向相同的向量叫做相等向量。

平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量。

单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示。

相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

二、数乘运算性质

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ

=

0时,λa=0。

用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)

设λ、μ是实数,那么满足如下运算性质:

(λμ)a=

λ(μa)

+

μ)a=

λa+

μa

λ(a±b)

=

λa±

λb

(-λ)a=-(λa)

=

λ(-a)

|λa|=|λ||a|

参考资料来源:百度百科-平面向量

1、对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a。

2、当向量a=(x1,y1),向量b=(x2,y2)时,当x1y2=x2y1时,向量a‖向量b,反之也成立。

平行向量用法:

1、加法运算

对于零向量和任意向量  ,有:  。向量的加法满足所有的加法运算定律。

三角形法则:已知从点A出发的向量  与从点B出发的向量 相加,则以A为起点的向量  即为它们之和。

平行四边形法则:已知两个从同一点O出发的两个向量 、 ,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线向量  就是向量 、  的和,这种计算法则叫做向量加法的平行四边形法则。

2、减法运算

与 长度相等,方向相反的向量,叫做  的相反向量,  ,零向量的相反向量仍然是零向量。(1)  ;(2)  。以减向量的终点为起点,被减向量的终点为终点(三角形法则)。

a,b是两个向量,a=(a1,a2),b=(b1,b2)。a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数。a垂直b:a1b1+a2b2=0。

向量垂直,平行的公式

若a,b是两个向量:a=(x,y)b=(m,n);

则a⊥b的充要条件是a·b=0,即(xm+yn)=0;

向量平行的公式为:a//b→a×b=xn-ym=0;

在数学中,向量,指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向;

向量积的基本概念

表示方法

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。

定义

向量积可以被定义为:

模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)

方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

也可以这样定义(等效):

向量积|c|=|a×b|=|a||b|sin<a,b>

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。

以上就是关于向量a平行向量b的公式全部的内容,包括:向量a平行向量b的公式、两向量平行能推出的公式是什么、平面向量的垂直和平行公式等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3800420.html

最新回复(0)