怎样辨别奇函数和偶函数

祈祷君2023-05-04  30

判断方法

看图像,奇函数关于原点对称;偶函数关于Y轴对称;

即奇又偶就是即关于原点对称又关于Y轴对称,这种只有常数函数且为0的函数;

非奇非偶就是即不关于原点对称又不关于y轴对称的函数,看其能否满足一定的条件奇函数,对任意定义域内的x都满足f(-x)=-f(x);偶函数,对任意定义域内的x都满足f(-x)=f(x);

即奇又偶,对任意定义域内的x都满足f(-x)=f(x)且满足f(-x)=-f(x),这只有常数为0的函数;

非奇非偶,对任意定义域内的x不,f(-x)=f(x)和f(-x)=-f(x),都不成立。

扩展资料:

运算法则

(1)两个偶函数相加所得的和为偶函数

(2)两个奇函数相加所得的和为奇函数

(3)一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数

(4)两个偶函数相乘所得的积为偶函数

(5)两个奇函数相乘所得的积为偶函数

(6)一个偶函数与一个奇函数相乘所得的积为奇函数

(7)奇函数一定满足f(0)=0(因为F(0)这个表达式表示0在定义域范围内,F(0)就必须为0)所以不一定奇函数有f(0),但有F(0)时F(0)必须等于0,不一定有f(0)=0,推出奇函数,此时函数不一定为奇函数,例f(x)=x^2

(8)定义在R上的奇函数f(x)必满足f(0)=0;因为定义域在R上,所以在x=0点存在f(0),要想关于原点对称,在原点又只能取一个y值,只能是f(0)=0。这是一条可以直接用的结论:当x可以取0,f(x)又是奇函数时,f(0)=0)。

常见奇函数有正比例函数,f(x)=kx,k≠0;反比例函数,f(x)=k/x,k≠0;三次函数(特殊),f(x)=ax³;正弦函数,f(x)=sinx;正切函数,f(x)=tanx;余切函数,f(x)=cotx。等等。

常见偶函数有二次函数(特殊),f(x)=ax²+c,a≠0;余弦函数,y=cosx;正反比例函数的绝对值复合函数,f(x)=a|x|,f(x)=a/|x|。等等。

扩展资料:

奇函数的性质

1 两个奇函数相加所得的和或相减所得的差为奇函数。

2 一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

3 两个奇函数相乘所得的积或相除所得的商为偶函数。

4 一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

偶函数的性质

1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=xx。

2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。

3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。

参考资料来源:百度百科-偶函数

参考资料来源:百度百科-奇函数

如果对于函数f(x)的定义域内的任意一个x值,都有f(-x)=-(x),那么就称f(x)为奇函数。

如果对于函数f(x)的定义域内的任意一个x值,都有f(-x)=f(x),那么就称f(x)为偶函数。

说明:(1)由奇函数、偶函数的定义可知,只有当f(x)的定义域是关于原点成对称的若干区间时,才有可能是奇函数。

(2)判断是不是奇函数或偶函数,不能轻率从事。为了便于判断有时可采取如下办法:计算f(x)+f(-x),视其结果而说明是否是奇函数。用这个方法判断此函数较为方便。

(3)判断函数的奇偶性时,还应注意是否对定义域内的任何x值, 当x≠0时,显然有f(-x)=-f(x),但当x=0时,f(-x)=f(x)=1,∴f(x)为非奇非偶函数。

(4)奇函数的图象特征是关于坐标原点为对称的中心对称图形;偶函数的图象特征是关于y轴为对称轴的对称图形。

(5)函数的单调性与奇偶性综合应用时,尤其要注意由它们的定义出发来进行论证。例如果函数f(x)是奇函数,并且在(0,+∞)上是增函数,试判断在(-∞,0)上的增减性.

解:设x1,x2∈(-∞,0),且x1<x2<0

则有-x1>-x2>0,

∵f(x)在(0,+∞)上是增函数,

∴f(-x1)>f(-x2)

又∵f(x)是奇函数,∴f(x)=-f(x)对任意x成立,

∴=-f(x1)>-f(x2)

∴f(x1)<f(x2).

∴f(x)在(-∞,0)上也为增函数.

由此可得出结论:一个奇函数若在(0,+∞)上是增函数,则在(-∞,0)上也必是增函数,即奇函数在(0,+∞)上与(-∞,0)上的奇偶性相同。类似地可以证明,偶函数在(0,+∞)和(-∞,0)上的奇偶性恰好相反时f(x)的解析式 。

解 ∵x<0,∴-x>0.

又∵f(x)是奇函数,∴f(-x)=-f(x).

一、奇函数性质

1 两个奇函数相加所得的和或相减所得的差为奇函数 。

2 一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

3 两个奇函数相乘所得的积或相除所得的商为偶函数。

4 一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

5 奇函数在对称区间上的积分为零。

二、奇函数性质

1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=xx;

2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。

3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。

扩展资料:

常用结论

(1)奇函数在对称的单调区间内有相同的单调性

偶函数在对称的单调区间内有相反的单调性

(2)若f(x-a)为奇函数,则f(x)的图像关于点(a,0)对称

若f(x-a)为偶函数,则f(x)的图像关于直线x=a对称

(3)在f(x),g(x)的公共定义域上:奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

奇函数×偶函数=奇函数

参考资料来源:百度百科-奇函数

参考资料来源:百度百科-偶函数

1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图像的特征:

定理 奇函数的图像关于原点成中心对称图形,偶函数的图象关于y轴对称

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增

偶函数 在某一区间上单调递增,则在它的对称区间上单调递减

以上就是关于怎样辨别奇函数和偶函数全部的内容,包括:怎样辨别奇函数和偶函数、常见的奇函数和偶函数有哪些、什么叫奇函数,什么叫偶函数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3789516.html

最新回复(0)