连续的条件和可导的条件是什么

吾师道也2023-04-30  25

连续可导的条件是:函数在该点连续且左导数、右导数都存在并相等。连续的函数不一定可导,可导的函数一定连续。

函数可导与连续的关系:定理若函数f(x)在x0处可导,则必在点x0处连续。函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。

1、如果f是在x0处可导的函数,则f一定在x0处连续,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。

2、不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

3、对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的'导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

可微分是连续的充分条件。全微分于某点存在的充分条件是函数在该点的某邻域内存在所有偏导数,且所有偏导数于此点连续。全微分于某点存在的必要条件:该点处所有方向导数存在。偏导数存在且连续是可微的充分不必要条件条件。

函数可微的条件是什么:对于一元函数而言,可微必可导,可导必可微,这是充要条件;对于多远函数而言,可微必偏导数存在,但偏导数存在不能推出可微,而是偏导数连续才能推出可微来,这就不是充要条件了。

要证明一个函数可微,必须利用定义,即全增量减去(对x的偏导数乘以x的增量)减去(对y的偏导数乘以Y的增量)之差是距离的高阶无穷小,才能说明可微。

函数在x0点连续的充要条件为f(x0)=lim(x→x0)f(x),即函数在此点函数值存在,并且等于此点的极限值

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的充要条件是此函数在此点必须连续,并且左导数等于右倒数。(我们老师曾经介绍过一个Weierstrass什么维尔斯特拉斯的推导出来的函数处处连续却处处不可导,有兴趣可以查一下)

可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。

函数可积只有充分条件为:①函数在区间上连续②在区间上不连续,但只存在有限个第一类间断点(跳跃间断点,可去间断点)上述条件实际上为黎曼可积条件,可以放宽,所以只是充分条件

可导必连续,连续不一定可导,即可导是连续的充分条件,连续是可导的必要条件

一元函数中可导与可微等价,多元函数中可微必可导,可导不一定可微,即可微是可导的充分条件,可导是可微的必要条件

所以按条件强度可微≥可导≥连续

可积与可导可微连续无必然关系

判断函数f(x)在x0点处连续,当且仅当f(x)满足以下三个充要条件

1、f(x)在x0及其左右近旁有概念。

2、f(x)在x0的极限存在。

3、f(x)在x0的极限值与函数值f(x0)相等。

简介

所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。

绝对值函数也是连续的。定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。

1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续

2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续

3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续

4、观察图像(这个不严谨,只适用直观判断)

5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的

6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的

① 函数f(x)在点x的某邻域内有定义

② 函数在此点的极限值存在

③ 这个极限等于函数值f(x)

扩展资料:

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

设f是一个从实数集的子集射到 的函数:f在中的某个点c处是连续的当且仅当以下的两个条件满足:

f在点c上有定义。c是其中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。

不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。

仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:

对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的δ,只要x满足c - δ< x < c + δ,就有成立。

以上就是关于连续的条件和可导的条件是什么全部的内容,包括:连续的条件和可导的条件是什么、可微是连续的什么条件、函数连续、可导、可微、可积的条件等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3741320.html

最新回复(0)