1,线与面不相交,即平行
2,取任意一条垂直于面的直线,并与该线垂直,即线与面平行,或者反过来也可以
3,取一个面与该面平行,若证明该线存在于取得的一个面上,那么线与面平行,或者反过来也可以(反过来即可以线为基本,证明取得的线或面与要求的面平行或垂直)
定理1
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
已知:a∥b,a⊄α,b⊂α,求证:a∥α
反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α
∵a∥b,∴A不在b上
在α内过A作c∥b,则a∩c=A
又∵a∥b,b∥c,
∴a∥c,与a∩c=A矛盾。
∴假设不成立,a∥α
向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。
∵b⊂α
∴b⊥p,即p·b=0
∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb
那么p·a=p·kb=kp·b=0
即a⊥p
∴a∥α
定理2
平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
已知:a⊥b,b⊥α,且a不在α上。求证:a∥α
证明:设a与b的垂足为A,b与α的垂足为B。
假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC
∵B∈α,C∈α,b⊥α
∴b⊥BC,即∠ABC=90°
∵a⊥b,即∠BAC=90°
∴在△ABC中,有两个内角为90°,这是不可能的事情。
∴假设不成立,a∥α
扩展资料
法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
计算
对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。
用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。
如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为
如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。
参考资料来源:百度百科-线面平行
参考资料来源:百度百科-法向量
证明:做垂直交于两个平面的线,两条垂线的间距S,S>0;两条垂线L1,L2,交上平面分别为a,b,交下平面与c,d,连接ab,cd,所以abcd为矩形,所以ab//cd,所以ab//cd所在平面。
面面平行,指的是两个平面平行。如果两个平面没有公共点,则称这两个平面平行。如果两个平面的垂线平行,那么这两个平面平行。如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面也平行。
线面平行判断方法
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
注:线面平行通常采用构造平行四边形来求证。
证明面面平行方法一
线面垂直:1一条线与平面内两条相交直线垂直一条线在一个平面内,而这个平面与另外一个平面垂直,那么这条线与另外一个平面垂直
面面垂直:一条线与平面内两条相交直线垂直,且有一个平面经过这条线
证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a 在平面α上,b 在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面 γ上,b 在平面γ上
∴a∥b
证明面面平行用反证法命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点P,点P∈β
又因为P∈AB,所以P∈α
α、β有公共点P,与命题α∥β不符,所以AB∥β。
直线与平面平行的判定
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
判断直线与平面平行的方法
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的'性质:两个平面平行,则一个平面内的直线必平行于另一个
面面平行命题解答命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点P,点P∈β
又因为P∈AB,所以P∈α
α、β有公共点P,与命题α∥β不符,所以AB∥β。
线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。
线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。
面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
三垂线定理 如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。
以上就是关于怎么证明线与面平行全部的内容,包括:怎么证明线与面平行、怎样用向量法证线面平行、怎样通过面面平行证明线面平行等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!