三角函数公式是初高中必备。本文主要介绍三角函数的所有公式。
三角函数的定义:
sin等于斜边的对边;新浪= a/c;
余弦(cos)等于邻边比斜边;cosA = b/c;
切线(tan)与邻边相比等于对面;tanA = a/b;
cot等于相邻边与边的比较;cotA = b/a;
对角乘积为1,即sin middotcsc theta=1;cos θ; middot秒θ;=1;tan θ; middotcot theta=1。
商的关系:sin alpha/cos alpha;= tan alpha= sec alpha/CSC alpha;;cos alpha/sin alpha;= cot alpha= csc alpha/秒 alpha;
04两个角的和差公式:
tan( alpha;+β;)=(tan alpha;+tan beta;)/(1-tan alpha;tan beta);
tan( alpha;-β;)=(tan alpha;-tan beta;)/(1+tan alpha;tan beta);
cos( alpha;+β;)= cos alphacos β;-sin alpha;sin β;;
cos( alpha;-β;)= cos alphacos β;+sin alpha;sin β;;
sin( alpha;+β;)= sin alphacos β;+cos alpha;sin β;;
sin( alpha;-β;)= sin alphacos β;-cos alpha;sin β;
幂递减公式
sin sup 2; alpha=[1-cos(2 alpha;)]/2;
cos sup 2; alpha=[1+cos(2 alpha;)]/2;
tan sup 2; alpha=[1-cos(2 alpha;)]/[1+cos(2 alpha;)];
倍角公式:
sin 2 alpha;= 2sin alpha middotcos alpha;
余弦:Cos2 alpha=cos^2(alpha;)-sin^2(alpha;) ;
cos 2 alpha;=1-2sin^2(alpha;) ;
cos 2 alpha;=2cos^2(alpha;)-1 ;
是Cos2 alpha=cos^2(alpha;)-sin^2(alpha;)=2cos^2(alpha;)-1=1-2sin^2(alpha;);正切2 alpha=(2tan alpha;)/(1-tan^2(alpha;));
辅助角度公式:
asinx+b cosx = radical;(a sup2+b sup 2;)sin(x+φ;)
tan phi;=b/a, phi的象限由A和B决定;
半角公式:
09普通特殊角度:
不常用的关系式 01通用公式:sin alpha= 2tan( alpha;/2)/[1+tan^2(alpha;/2)] ;
cos alpha;=[1-tan^2(alpha;/2)]/[1+tan^2(alpha;/2)] ;
tan alpha;= 2tan( alpha;/2)/[1-tan^2(alpha;/2)];
半角公式
tan( alpha;/2)=(1-cos alpha;)/sin alpha;= sin alpha/(1+cos α;);
cot( alpha;/2)= sin alpha;/(1-cos α;)=(1+cos α;)/sin alpha;;
sin^2(alpha;/2)=(1-cos(α;))/2;
cos^2(alpha;/2)=(1+cos(α;))/2;
tan( alpha;/2)=(1-cos(α;))/sin(α;)= sin(α;)/(1+cos(α;)) ;
和差积:
sin theta;+sin phi;= 2 sin[(θ;+ phi;)/2]cos[(θ;- phi;)/2];
sin theta;-sin phi;= 2 cos[(θ;+ phi;)/2]sin[(θ;- phi;)/2];
cos theta;+cos phi;= 2 cos[(θ;+ phi;)/2]cos[(θ;- phi;)/2];
cos theta;-cos phi;=-2 sin[(θ;+ phi;)/2]sin[(θ;- phi;)/2];
tan theta;+tan phi;= sin(θ;+ phi;)/cosθ;cos phi= tan(θ;+ phi;)(1-tanθ;tan phi);
tan theta;-tan phi;= sin(θ;- phi;)/cosθ;cos phi= tan(θ;- phi;)(1+tanθ;tan phi)
积与差的公式:
sin alpha;sin β;=-[cos( alpha;+β;)-cos(α;-β;)] /2;
cos alpha;cos β;=[cos( alpha;+β;)+cos(α;-β;)]/2;
sin alpha;cos β;=[sin( alpha;+β;)+sin(α;-β;)]/2;
cos alpha;sin β;=[sin( alpha;+β;)-sin(α;-β;)]/2;
三角形:
sin( alpha;+β;+-γ)= sin alpha middotcos β; middotcos γ;+cos alpha; middotsin β; middotcos γ;+cos alpha; middotcos β; middotsin γ;-sin alpha; middotsin β; middotsin γ;
cos( alpha;+β;+-γ)= cos alpha middotcos β; middotcos γ;-cos alpha; middotsin β; middotsin γ;-sin alpha; middotcos β; middotsin γ;-sin alpha; middotsin β; middotcos γ;
tan( alpha;+β;+-γ)=(tan alpha;+tan beta;+tan gamma;-tan alpha; middottan beta middottan γ;)分;(1-tan alpha; middottan beta-tan beta; middottan γ;-tan γ; middottan alpha)
本教程仅供参考,如有缺陷请谅解!