如图:
判断方法:
首先讲一下间断点的类型,有第一类间断点:其中包括可去间断点(左右极限相等此点无意义)、跳跃间断点(左右极限不相等)
第二类间断点:震动间断点(函数值在上下来回震动)、无限间断点(函数值)
判断方法首先找出函数没有意义的点。
然后判断左右极限,如果存在则是第一类间断点,不存在是第二类间断点。
最后根据极限是否相等、是否存在来判断是可去间断点、跳跃间断点、震动间断点、无限间断点中的哪一种。
函数间断点是微积分中函数连续性讨论的一个概念,通常是函数在某点没有意义,就是函数的间断点。比如函数y=1/x中,x=0就是一个间断点。
一、对于一般函数:
1、找函数的无定义点(此题为x=0)
2、看无定义点的左右极限是否相等。若相等,则为可去间断点,若不相等,则为不可去间断点。
二、对于分段函数:
1、找函数的分段点(例如x=x0点),
2、看x0点的左右极限是否相等。若相等,且=f(x0),则无间断点;若相等,但≠f(x0),则为可去间断点;若不相等,则为不可去间断点。
扩展资料:
函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
参考资料来源:百度百科-函数
先找出无定义的点,就是间断点。
然后用左右极限判断是第一类间断点还是第二类间断点,第一类间断点包括第一类可去间断点和第一类不可去间断点,如果该点左右极限都存在,则是第一类间断点,其中如果左右极限相等,则是第一类可去间断点,如果左右极限不相等,则是第一类不可去间断点,即第一类跳跃间断点。如果左右极限中有一个不存在,则第二类间断点。
间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。
扩展资料:
间断点是指:在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。
间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值
参考资料:
可去间断点即左极限=右极限=有限值,与此点取值、有无定义均无关,可以通过重新定义让其连续的点。
分母为0的“有限点”(不算x→∞)都有可能是可去间断点,所以拿出来依次讨论。x=0、x=-1和x=1
(1)当x→0时,因为涉及到|x|,所以有必要分两边进行讨论
当x→0+时,limf(x)=lim(x^x-1)/[x(x+1)lnx]=lim(x^x-1)/(xlnx)
因为0^0=1,所以分子在x→0+时是趋近于0的;对于分母,xlnx=lnx/(1/x),应用L'Hospital法则便知在x→0+时也是趋近于0的。
故,分子分母满足0/0型的L'hospital法则,lim(x^x-1)/(xlnx)=lim(x^x)(lnx+1)/(lnx+1)=lim(x^x)=1
当x→0-时,limf(x)=lim[(-x)^x-1]/[x(x+1)ln(-x)]=lim[(-x)^x-1]/[xln(-x)]
同理,分子分母满足0/0型的L'hospital法则,lim[(-x)^x-1]/[xln(-x)]=lim[(-x)^x][ln(-x)+1]/[ln(-x)+1]=lim[(-x)^x]=1
综上,当x→0时,左极限=右极限=1,故,x=0是可去间断点。
(2)当x→-1时,limf(x)=lim[(-x)^x-1]/[x(x+1)ln(-x)]=lim[1-(-x)^x]/[(x+1)ln(-x)]
情况类似于x→0,分子1-(-x)^x→0;分母(x+1)ln(-x)满足∞/∞的L'Hospital法则,其极限为0。
所以,总体上满足0/0型的L'Hospital法则,
limf(x)=lim[1-(-x)^x]/[(x+1)ln(-x)]=lim[-(-x)^x][ln(-x)+1]/[ln(-x)+(x+1)/x]→∞
其中,x→-1+时为+∞,x→-1-时为-∞,这是无穷间断点,不满足要求。舍去。
(3)当x→1时,limf(x)=lim(x^x-1)/[x(x+1)lnx]=lim(x^x-1)/(2lnx)
分子分母满足0/0型的L'Hospital法则,有
lim(x^x-1)/(2lnx)=lim(x^x)(lnx+1)/(2/x)=1/2,故x=1也是可去间断点。
综合上述,x=0和x=1是可去间断点。选C
首先看函数x取何值时无意义,明显x=±1时函数无意义。
当x=1时函数的左极限(从负无穷趋向于1)等于﹢π,右极限(从正无穷趋向于1)等于﹣π;
左极限不等于右极限,为第一类间断点中的跳跃间断点。
当x=﹣1时函数的左极限等于0右极限等于0但函数在该点处无意义,所以为第一类间断点中的可去间断点。
扩展资料:
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
参考资料来源:百度百科-间断点
以上就是关于请问如何判别间断点的类型呢谢谢全部的内容,包括:请问如何判别间断点的类型呢谢谢、函数的间断点是什么、间断点类型有哪几种等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!