打开百度APP,查看更多高清
一、 光合作用
光合作用即光能合成作用,是指含有叶绿体的绿色植物和某些细菌,在可见光的照射下,经过光反应和碳反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。
二、 光合作用的过程
1、 光合作用的过程
①光反应阶段
a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)
b、ATP的形成:ADP+Pi+光能—→ATP(为暗反应提供能量)
2、 光反应与暗反应的区别与联系
①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
③物质变化:光反应发生水的光解和ATP的形成,暗反应发生CO2的固定和C3化合物的还原。
④能量变化:光反应中光能→ATP中活跃的化学能,在暗反应中ATP中活跃的化学能→CH2O中稳定的化学能。
⑤联系:光反应产物[H]是暗反应中CO2的还原剂,ATP为暗反应的进行提供了能量,暗反应产生的ADP和Pi为光反应形成ATP提供了原料。
三、 叶绿体色素
①分布:基粒片层结构的薄膜上。
②色素的种类:高等植物叶绿体含有以下四种色素。
A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b;
B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素和叶素。
四、 叶绿体的酶
分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
五、 光合作用的意义
①提供了物质来源和能量来源。
②维持大气中氧和二氧化碳含量的相对稳定。
③对生物的进化具有重要作用。总之,光合作用是生物界最基本的物质代谢和能量代谢。
六、 影响光合作用的因素
有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。这些因素中任何一种的改变都将影响光合作用过程。
七、 光合作用化学方程式
CO2+H2O→(CH2O)+O2(反应条件:光能和叶绿体)
6H2O+6CO2+阳光→C6H12O6(葡萄糖)+6O2(与叶绿素产生化学作用)
(化学反应式12H2O+6CO2→C6H12O6(葡萄糖)+6O2+6H2O箭头上标的条件是:酶和光照,下面是叶绿体)
H2O→2H++2e-+1/2O2(水的光解)
NADP++2e-+H+→NADPH(递氢)
ADP+Pi+能量→ATP(递能)
CO2+C5化合物→2C3化合物(二氧化碳的固定)
2C3化合物+4NADPH→C5糖(有机物的生成或称为C3的还原)
C3(一部分)→C5化合物(C3再生C5)
C3(一部分)→储能物质(如葡萄糖、蔗糖、淀粉,有的还生成脂肪)
ATP→ADP+Pi+能量(耗能)
C3:某些3碳化合物
C5:某些5碳化合物
能量转化过程:光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能
注:因为反应中心吸收了特定波长的光后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上缺的。产生ATP与NADPH分子,这个过程称为电子传递链。
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。[1]其主要包括光反应、暗反应两个阶段,[2]涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
暗反应为光反应提供:ADP和NADP+
光反应(light reaction)只发生在光照下,是由光引起的反应。光反应发生在叶绿体的基粒片层(光合膜)。光反应从光合色素吸收光能激发开始,经过电子传递,水的光解,最后是光能转化成化学能,以ATP和NADPH的形式贮存。
生物光学反应也称为暗反应,是一种不断消耗ATP和NADPH并固定CO2形成葡萄糖的循环反应,又被称为卡尔文循环。卡尔文用C标记的CO2,探明了CO2转化成有机物的途径,所以暗反应过程又被称为“卡尔文循环”。
光反应发生在光照下叶绿体的基粒片层中。光反应包括两个步骤:
(1)光能的吸收、传递和转换的过程——一通过原初反应完成。原初反应的基本单位是光合单位,由100多个天线色素和一个作用中心构成。其中作用中心由原初电子供体、反应中心色素分子(也称作用中心)、原初电子受体组成。其中反应中心色素分子具有光化学特性,其余天线色素分子仅具有光物理特性。其实,光合单位也就是光系统的抽象形式。
(2)电能转变为活跃的化学能的过程——一通过电子传递和光合磷酸化完成。
1.光能的吸收、传递和转换—一原初反应在光照下,叶绿素分子吸收光能,被激发出一个高能电子。该高能电子被一系列传递电子的物质有规律地传递下去。叶绿素分子由于失去一个电子,就留下一个空穴,这空穴立刻从电子供体得到一个电子来填补,使叶绿素分子恢复原来状态,准备再一次被激发。这样,叶绿素分子不断被激发,不断给出高能电子,又不断地补充电子,就完成了从光能到电能的过程——原初反应。
2.电子传递和光合磷酸化原初反应中的电能再用作水的光解和光合磷酸化,经过一系列电子传递体的传递,最后形成ATP和NADPH,H+。
(1)水的光解和氧的释放 当叶绿素分子吸收光能后,被激发出一个高能电子,处于很不稳定的状态,有极强的夺回电子的能力。经实验证明,它是从周围的水分子中夺得电子,因而促使水的分解。
其中的氧被释放出来,氢和辅酶Ⅱ(NADP)结合,形成还原型辅酶Ⅱ(NADPH)。 因为光合作用的原料CO2和H2O中都有氧,而光合作用放出的氧来自水,所以为了明确起见,可将光合作用方程式改写成:(2)光合磷酸化 光合作用中形成的高能电子在传递过程中,拿出一部分能量使ADP和(P)结合形成ATP的过程,叫做光合磷酸化。 光合作用中磷酸化跟电子传递是偶联的,一般认为光合磷酸化偶联因子是它们之间的物质联系。实验证明,偶联因子是位于类囊体膜表面的一种蛋白质颗粒。用特殊溶液洗脱这种颗粒,类囊体便失去合成ATP的能力。如把含有这种颗粒的溶液加入类囊体残膜,则光合磷酸化活力又可部分恢复。 到此为止,ATP和NADPH已形成了,它们是光合作用的重要中间产物,一方面因为这两者都能暂时贮存能量,继续向下传递;另一方面因为NADPH的H又能进一步还原二氧化碳,并把它固定成中间产物。这样就把光反应和暗反应联系起来了。因为叶绿体有了ATP和NADPH,可在暗反应中同化二氧化碳,所以有人把这两种物质叫做同化能力。
1、光反应
光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。
反应式为:
2、暗反应
暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。
反应式为:
扩展资料
植物进行光合作用的意义有:
1、将太阳能变为化学能
植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。 因此可以说,光合作用提供今天的主要能源。绿色植物是一个巨型的能量转换站。
2、把无机物变成有机物
植物通过光合作用制造有机物的规模是非常巨大的。 人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。
3、维持大气的碳-氧平衡
大气之所以能经常保持21%的氧含量,主要依赖于光合作用。光合作用一方面为有氧呼吸提供了条件,另一方面,的积累,逐渐形成了大气表层的臭氧层。臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。
参考资料来源:百度百科-光合作用
(1)光反应。场所:类囊体薄膜。
2H₂O—光→4+O₂
ADP+Pi(光能,酶)→ATP
(2)暗反应(新称碳反应)。场所:叶绿体基质。
CO₂+C₅→(酶)C₃
2C₃+()→(baiCH₂O)+C₅+H2O
(3)总方程
6CO₂+6H₂O(光照、酶、叶绿体)→C₆H₁₂O₆(CH₂O)+6O₂
二氧化碳+水→(光能,叶绿体)有机物(储存能量)+氧气
光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。
影响植物光合作用的外界条件:
1、光照强度
光是光合作用的能源,光的增加、光合作用随之增加,但光增强到一定限度,光合作用就不再增加,反而会下降,因为这时候气孔关闭。
2、二氧化碳浓度
二氧化碳是光合作用的原料,二氧化碳浓度在一定范围内增大,植物的产量爷随之增加。如果浓度过高的话会造成叶片中淀粉的积累(一般在棚室发生),影响光合作用正常进行。
光反应和暗反应方程式:CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2(CH2O:表示糖类)。
光反应发生在叶绿体的类囊体膜(光合膜),暗反应开始于叶绿体基质,结束于细胞质基质,光反应是通过叶绿素等光合色素分子吸收光能,并将光能转化为化学能,形成ATP和NADPH的过程。暗反应是由光量子为生物色素吸收的时间极短的光反应过程和为光所激发的色素在暗处引起的一系列暗反应过程所组成的。
光反应影响
光反应为暗反应提供ATP和还原性的氢,暗反应为光反应提供ADP和Pi,相互促进。
暗反应增加,光反应就会增加;而增强光照,暗反应速率不增加,这是因为二氧化碳浓度受到了限制。
暗反应会消耗NADPH和ATP,同时生成NADP+和ADP,而这两个化合物正好是光反应所需要的原料,所以总的来说,暗反应是可以影响光反应的。但是光反应还受其他因素的影响,比如光强和色素含量。
以上内容参考 百度百科-光反应、百度百科-暗反应
光合作用场所在叶绿体,因为光合作用的两个阶段均发生在该细胞器中;
光反应在类囊体薄膜,因为与此有关的酶分布在这里;
暗反应在叶绿体基质,因为与此有关的酶分布在这里。
光合作用,即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。
光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。
光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。
光合作用可以将光能转变成化学能,绿色植物在同化二氧化碳的过程中,把太阳光能转变为化学能,并蓄积在形成的有机化合物中。人类所利用的能源,如煤炭、天然气、木材等都是现在或过去的植物通过光合作用形成的。
光反应:又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。然后电子通过在叶绿体类囊体膜中的电子传递链 间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电化学质子梯度,用于ATP的合成。光反应的最后一步是高能电子被NADP+接受,使其被还原成NADPH。光反应的场所是类囊体。概括地说光反应是通过叶绿素等光合色素分子吸收光能, 并将光能转化为化学能, 形成ATP和NADPH的过程
暗反应:绿叶通过气孔从外界吸进二氧化碳,不能直接被还原氢还原。它必须首先与植物体内的C5(一种五碳化合物,二磷酸核酮糖)结合,这个过程叫做二氧化碳的固定。一个二氧化碳分子被一个C5分子固定后,很快形成两个C3(一种三碳化合物, 12甘油醛-3-磷酸)分子。在有关酶的催化作用下,C3接受ATP释放的能量并且被还原氢还原。随后,一些接受能量并被还原氢还原的C3经过一系列变化,形成糖类;另一些接受能量并被还原氢还原的C3则经过一系列的化学变化,又形成C5,从而使暗反应阶段的化学反应持续地进行下去。简称碳固定反应(carbon-fixation reaction)。在这一反应中,叶绿体利用光反应产生的ATP和NADPH这两个高能化合物分别作为能源和还原的动力将CO2固定,使之转变成葡萄糖, 由于这一过程不需要光所以称为暗反应。碳固定反应开始于叶绿体基质, 结束于细胞质基质。
以上就是关于光合作用光反应全部的内容,包括:光合作用光反应、光反应为暗反应提供什么、光反应的光合作用等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!